117 research outputs found
Towards Translational ImmunoPET/MR Imaging of Invasive Pulmonary Aspergillosis: The Humanised Monoclonal Antibody JF5 Detects Aspergillus Lung Infections In Vivo
This is the final published versionAvailable from Ivyspring International Publisher via the DOI in this recordInvasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of hematological malignancy and bone marrow transplant patients caused by the ubiquitous environmental fungus Aspergillus fumigatus. Current diagnostic tests for the disease lack sensitivity as well as specificity, and culture of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI) using a [64Cu]DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung infection using a [64Cu]NODAGA-hJF5 tracer. The humanised antibody tracer shows a significant increase in in vivo biodistribution in A. fumigatus infected lungs compared to its radiolabeled murine counterpart [64Cu]NODAGA-mJF5. Using reverse genetics of the pathogen, we show that the antibody binds to the antigenic determinant 1,5-galactofuranose (Galf) present in a diagnostic mannoprotein antigen released by the pathogen during invasive growth in the lung. The absence of the epitope Galf in mammalian carbohydrates, coupled with the enhanced imaging capabilities of the hJF5 antibody, means that the [64Cu]NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting.This work was supported by the European Union Seventh Framework Programme FP7/2007-2013 under Grant 602820, the Deutsche Forschungsgemeinschaft (Grant WI3777/1-2 to SW), and the Werner Siemens Foundation. We thank Sven Krappman for use of the A. fumigatustdTomato strain, and acknowledge the Imaging Centre Essen (IMCES) for assistance with optical imaging of lungs
Germline MC1R status influences somatic mutation burden in melanoma
The major genetic determinants of cutaneous melanoma risk in the general population are disruptive variants (R alleles) in the melanocortin 1 receptor (MC1R) gene. These alleles are also linked to red hair, freckling, and sun sensitivity, all of which are known melanoma phenotypic risk factors. Here we report that in melanomas and for somatic C>T mutations, a signature linked to sun exposure, the expected single-nucleotide variant count associated with the presence of an R allele is estimated to be 42% (95% CI, 15-76%) higher than that among persons without an R allele. This figure is comparable to the expected mutational burden associated with an additional 21 years of age. We also find significant and similar enrichment of non-C>T mutation classes supporting a role for additional mutagenic processes in melanoma development in individuals carrying R alleles
The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy
International audienceA new efficient type of gadolinium-based theranostic agent (AGuIX) has recently been developed for magnetic resonance imaging (MRI)-guided radiotherapy. These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Due to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, while a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, these particles present no evidence of toxicity, in the absence of irradiation with up to 10 times the planned dose for clinical trials. AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies, and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Preclinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intra-tumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a radiotherapy protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed
Spectral analysis of the light emitted from streamers in chlorinated alkane and alkene liquids
International audienc
Spectral analysis of the light emitted from streamers in liquid CCL4.
International audienc
Spectral analysis of the light emitted from streamers in some chlorinated alkane and alkene liquids
International audienc
Direct measurements of ions mobilities in gaseous helium for validation of their indirect determinations using corona discharges
Spectral analysis of light emitted from streamers in chlorinated alkane & alkene liquids
- …
