141 research outputs found

    Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx

    Get PDF
    Background: Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. Results: We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. Conclusions: The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species

    High frequency oscillatory ventilation and prone positioning in a porcine model of lavage-induced acute lung injury

    Get PDF
    BACKGROUND: This animal study was conducted to assess the combined effects of high frequency oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and hemodynamics. METHODS: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the arterial oxygen partial pressure (PaO(2)) decreased to 55 ± 7 mmHg. The animals were ventilated in the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH(2)O and a tidal volume (V(T)) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV in prone position. After evaluation of prone positioning in group 2, the mean airway pressure (P(mean)) was increased by 3 cmH(2)O from 16 to 34 cmH(2)O every 20 minutes in both groups accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were ventilated supine with PCV, PEEP = 5 cm H(2)O, V(T )= 6 ml/kg. RESULTS: Combination of HFOV with prone positioning improves oxygenation and results in normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a significant (p < 0.05) lower P(mean )than HFOV and supine positioning. CONCLUSION: If ventilator induced lung injury is ameliorated by a lower P(mean), a combined treatment approach using HFOV and prone positioning might result in further lung protection

    Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Get PDF
    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8 K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20 K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7 K validated SNPs from the IRSC 8 K array. The array has already been used in other studies where ∼15.8 K SNP markers were mapped with an average of ∼6.8 K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs

    Colorectal adenomas contain multiple somatic mutations that do not coincide with synchronous adenocarcinoma specimens

    Get PDF
    We have performed a comparative ultrasequencing study of multiple colorectal lesions obtained simultaneously from four patients. Our data show that benign lesions (adenomatous or hyperplastic polyps) contain a high mutational load. Additionally multiple synchronous colorectal lesions show non overlapping mutational signatures highlighting the degree of heterogeneity between multiple specimens in the same patient. Observations in these cases imply that considering not only the number of mutations but an effective oncogenic combination of mutations can determine the malignant progression of colorectal lesions

    Precision in Liver Diagnosis: Varied Accuracy Across Subgroups and the Need for Variable Thresholds in Diagnosis of MASLD

    Get PDF
    \ua9 2025 The Author(s). Liver International published by John Wiley &amp; Sons Ltd.Background and Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes. Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included. The diagnostic performance of the Fibrosis-4 Index (FIB-4), enhanced liver fibrosis (ELF) and vibration-controlled transient elastography liver stiffness measurement (VCTE LSM) was evaluated. Performance was expressed as the area under the receiver operating characteristics curve (AUC). Thresholds for detecting advanced fibrosis (≥F3) were calculated for each NIT for fixed (high) sensitivity, specificity and predictive values. Results: Differences in AUC between all subgroups were small and statistically not significant, indicating comparable performance in detecting ≥F3, irrespective of these clinical factors. However, different thresholds were needed to achieve the same level of accuracy with each test. For example, for a fixed sensitivity and specificity, the thresholds for all three NITs were higher in patients with T2DM. Effects for sex, age and liver enzymes were less pronounced. Conclusions: Performance of the selected NITs in detecting advanced liver fibrosis does not vary substantially with clinical characteristics. However, different thresholds have to be selected to achieve the same sensitivity, specificity and predictive values in the respective subgroups. Large prospective studies are called for to study NIT accuracy considering multiple patient characteristics

    Towards the prevention of acute lung injury: a population based cohort study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute lung injury (ALI) is an example of a critical care syndrome with limited treatment options once the condition is fully established. Despite improved understanding of pathophysiology of ALI, the clinical impact has been limited to improvements in supportive treatment. On the other hand, little has been done on the prevention of ALI. Olmsted County, MN, geographically isolated from other urban areas offers the opportunity to study clinical pathogenesis of ALI in a search for potential prevention targets.</p> <p>Methods/Design</p> <p>In this population-based observational cohort study, the investigators identify patients at high risk of ALI using the prediction model applied within the first six hours of hospital admission. Using a validated system-wide electronic surveillance, Olmsted County patients at risk are followed until ALI, death or hospital discharge. Detailed in-hospital (second hit) exposures and meaningful short and long term outcomes (quality-adjusted survival) are compared between ALI cases and high risk controls matched by age, gender and probability of developing ALI. Time sensitive biospecimens are collected for collaborative research studies. Nested case control comparison of 500 patients who developed ALI with 500 matched controls will provide an adequate power to determine significant differences in common hospital exposures and outcomes between the two groups.</p> <p>Discussion</p> <p>This population-based observational cohort study will identify patients at high risk early in the course of disease, the burden of ALI in the community, and the potential targets for future prevention trials.</p

    Metabolic regulation by p53

    Get PDF
    We are increasingly aware that cellular metabolism plays a vital role in diseases such as cancer, and that p53 is an important regulator of metabolic pathways. By transcriptional activation and other means, p53 is able to contribute to the regulation of glycolysis, oxidative phosphorylation, glutaminolysis, insulin sensitivity, nucleotide biosynthesis, mitochondrial integrity, fatty acid oxidation, antioxidant response, autophagy and mTOR signalling. The ability to positively and negatively regulate many of these pathways, combined with feedback signalling from these pathways to p53, demonstrates the reciprocal and flexible nature of the regulation, facilitating a diverse range of responses to metabolic stress. Intriguingly, metabolic stress triggers primarily an adaptive (rather than pro-apoptotic) p53 response, and p53 is emerging as an important regulator of metabolic homeostasis. A better understanding of how p53 coordinates metabolic adaptation will facilitate the identification of novel therapeutic targets and will also illuminate the wider role of p53 in human biology

    A Markov computer simulation model of the economics of neuromuscular blockade in patients with acute respiratory distress syndrome

    Get PDF
    BACKGROUND: Management of acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU) is clinically challenging and costly. Neuromuscular blocking agents may facilitate mechanical ventilation and improve oxygenation, but may result in prolonged recovery of neuromuscular function and acute quadriplegic myopathy syndrome (AQMS). The goal of this study was to address a hypothetical question via computer modeling: Would a reduction in intubation time of 6 hours and/or a reduction in the incidence of AQMS from 25% to 21%, provide enough benefit to justify a drug with an additional expenditure of 267(thedifferenceinacquisitioncostbetweenagenericandbrandnameneuromuscularblocker)?METHODS:Thebasecasewasa55yearoldmanintheICUwithARDSwhoreceivesneuromuscularblockadefor3.5days.AMarkovmodelwasdesignedwithhypotheticalpatientsin1of6mutuallyexclusivehealthstates:ICUintubated,ICUextubated,hospitalward,longtermcare,home,ordeath,overaperiodof6months.Thenetmonetarybenefitwascomputed.RESULTS:OurcomputersimulationmodelingpredictedthemeancostforARDSpatientsreceivingstandardcarefor6monthstobe267 (the difference in acquisition cost between a generic and brand name neuromuscular blocker)? METHODS: The base case was a 55 year-old man in the ICU with ARDS who receives neuromuscular blockade for 3.5 days. A Markov model was designed with hypothetical patients in 1 of 6 mutually exclusive health states: ICU-intubated, ICU-extubated, hospital ward, long-term care, home, or death, over a period of 6 months. The net monetary benefit was computed. RESULTS: Our computer simulation modeling predicted the mean cost for ARDS patients receiving standard care for 6 months to be 62,238 (5% – 95% percentiles 42,25942,259 – 83,766), with an overall 6-month mortality of 39%. Assuming a ceiling ratio of 35,000,evenifadrug(thatcost35,000, even if a drug (that cost 267 more) hypothetically reduced AQMS from 25% to 21% and decreased intubation time by 6 hours, the net monetary benefit would only equal $137. CONCLUSION: ARDS patients receiving a neuromuscular blocker have a high mortality, and unpredictable outcome, which results in large variability in costs per case. If a patient dies, there is no benefit to any drug that reduces ventilation time or AQMS incidence. A prospective, randomized pharmacoeconomic study of neuromuscular blockers in the ICU to asses AQMS or intubation times is impractical because of the highly variable clinical course of patients with ARDS
    corecore