120 research outputs found

    CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species

    Get PDF
    Background— The CD40/CD40 ligand system is involved in atherogenesis. Activated T lymphocytes and platelets, which express high amounts of CD40 ligand (CD40L) on their surface, contribute significantly to plaque instability with ensuing thrombus formation, leading to acute coronary syndromes. Because reendothelialization may play a pivotal role for plaque stabilization, we investigated a potential role of CD40L on endothelial cell (EC) migration

    Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells

    Get PDF
    Background— Transplantation of ex vivo expanded circulating endothelial progenitor cells (EPCs) from peripheral blood mononuclear cells improves the neovascularization after critical ischemia. However, the origin of the endothelial progenitor lineage and its characteristics have not yet been clearly defined. Therefore, we investigated whether the phenotype and functional capacity of EPCs to improve neovascularization depend on their monocytic origin

    Process evaluation of a health- and fitness-related physical education program

    Get PDF
    Objective The aim of this process evaluation study was to investigate fidelity, acceptance, applicability and movement time with respect to the health- and fitness-related GEKOS program (Förderung bewegungsbezogener Gesundheitskompetenz im Sportunterricht) linking theory and practice in physical education. Methods Fidelity was investigated by observation, self-report forms and poster documentations. Applicability and students’ (n = 472) and teachers’ (n = 27) acceptance were examined by qualitative interviews and surveys directly after the GEKOS program. Movement time was assessed using accelerometer data and compared to students’ (n = 369) movement time in regular physical education classes. Results Overall, fidelity was high and statements in the interviews and surveys with regard to applicability and acceptance were heterogeneous. Particularly critical was the low net movement time, which was assessed using device-based accelerometer data. Conclusion The results allowed us to identify barriers such as standardization and facilitators such as teachers’ acceptance of teaching student-centered approaches. Therefore, flexibility in the delivery of programs and the balance between net time moving and theoretical cognitive activating content in PE need to be discussed further in terms of long-term implementation of such a program

    Circulating Apoptotic Progenitor Cells in Patients with Congestive Heart Failure

    Get PDF
    Background: Circulating CD34+ endothelial progenitor cells (EPCs) are capable of differentiating into mature endothelial cells to assist in angiogenesis and vasculogenesis. We sought to quantify the numbers of apoptotic progenitors in patients with congestive heart failure. Methods and Results: Peripheral blood mononuclear cells were isolated by Ficoll density-gradient from 58 patients with various degrees of heart failure and 23 matched controls. Apoptosis in progenitor CD34+ cells was assessed using the Annexin V-PE/PI detection kit, and FACS analysis was performed with triple staining for CD34, annexin-V and propidium iodide. The percentage of early and late apoptotic progenitor cells was determined in the subject groups and was correlated with clinical characteristics. While there was no significant difference in total CD34 positive cells or early apoptotic progenitors between control subjects and CHF patients (p = 0.42) or between severe and mild/moderate CHF groups (p = 0.544), there was an elevated number of late apoptotic progenitors in the severe CHF group compared with the mild/moderate CHF group (p = 0.03). Late apoptotic progenitors were significantly increased in CHF patients as compared to matched controls. There was also an inverse correlation between late apoptotic progenitors and ejection fraction (r = 20.252, p = 0.028) as well as a positive association with NYHA class (r = 0.223, p = 0.046). Conclusion: Severe heart failure patients exhibited higher numbers of late apoptotic progenitors, and this was positivel

    Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment

    Get PDF
    Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progression, routine molecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics (ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM readouts. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to systematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative analysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of this paper's transparent peer review process is included in the supplemental information

    High-resolution molecular atlas of a lung tumor in 3D

    Get PDF
    Cells live and interact in three-dimensional (3D) cellular neighborhoods. However, histology and spatial omics methods mostly focus on 2D tissue sections. Here we present a 3D spatial atlas of a routine clinical sample, an aggressive human lung carcinoma, by combining in situ quantification of 960 cancer-related genes across ~340,000 cells with measurements of tissue-mechanical components. 3D cellular neighborhoods subdivided the tumor microenvironment into tumor, stromal, and immune multicellular niches. Interestingly, pseudotime analysis suggested that pro-invasive epithelial-to-mesenchymal transition (EMT), detected in stroma-infiltrating tumor cells, already occurred in one region at the tumor surface. There, myofibroblasts and macrophages specifically co-localized with pre-invasive tumor cells and their multicellular molecular signature identified patients with shorter survival. Moreover, cytotoxic T-cells did not infiltrate this niche but colocalized with inhibitory dendritic and regulatory T cells. Importantly, systematic scoring of cell-cell interactions in 3D neighborhoods highlighted niche-specific signaling networks accompanying tumor invasion and immune escape. Compared to 2D, 3D neighborhoods improved the characterization of immune niches by identifying dendritic niches, capturing the 3D extension of T-cell niches and boosting the quantification of niche-specific cell-cell interactions, including druggable immune checkpoints. We believe that 3D communication analyses can improve the design of clinical studies investigating personalized, combination immuno-oncology therapies

    TTF-1 status in early-stage lung adenocarcinoma is an independent predictor of relapse and survival superior to tumor grading

    Get PDF
    OBJECTIVES: Thyroid transcription factor 1 (TTF-1) is a well-established independent prognostic factor in lung adenocarcinoma (LUAD), irrespective of stage. This study aims to determine if TTF-1's prognostic impact is solely based on histomorphological differentiation (tumor grading) or if it independently relates to a biologically more aggressive phenotype. We analyzed a large bi-centric LUAD cohort to accurately assess TTF-1's prognostic value in relation to tumor grade. PATIENTS AND METHODS: We studied 447 patients with resected LUAD from major German lung cancer centers (Berlin and Cologne), correlating TTF-1 status and grading with clinical, pathologic, and molecular data, alongside patient outcomes. TTF-1's impact was evaluated through univariate and multivariate Cox regression. Causal graph analysis was used to identify and account for potential confounders, improving the statistical estimation of TTF-1's predictive power for clinical outcomes. RESULTS: Univariate analysis revealed TTF-1 positivity associated with significantly longer disease-free survival (DFS) (median log HR -0.83; p = 0.018). Higher tumor grade showed a non-significant association with shorter DFS (median log HR 0.30; p = 0,62 for G1 to G2 and 0.68; p = 0,34 for G2 to G3). In multivariate analysis, TTF-1 positivity resulted in a significantly longer DFS (median log HR -0.65; p = 0.05) independent of all other parameters, including grading. Adjusting for potential confounders as indicated by the causal graph confirmed the superiority of TTF-1 over tumor grading in prognostics power. CONCLUSIONS: TTF-1 status predicts relapse and survival in LUAD independently of tumor grading. The prognostic power of tumor grading is limited to TTF-1-positive patients, and the effect size of TTF-1 surpasses that of tumor grading. We recommend including TTF1 status as a prognostic factor in the diagnostic guidelines of LUAD

    Impairment of circulating endothelial progenitors in Down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.</p> <p>Methods</p> <p>Circulating endothelial progenitors of Down syndrome affected individuals were isolated, <it>in vitro </it>cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of <it>CXCL12 </it>gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.</p> <p>Results</p> <p>We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.</p> <p>Conclusions</p> <p>Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.</p
    corecore