1,120 research outputs found
Adapting the Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship Over the 20th Century
Adaptation is the only strategy that is guaranteed to be part of the world's climate strategy. Using the most comprehensive set of data files ever compiled on mortality and its determinants over the course of the 20th century, this paper makes two primary discoveries. First, we find that the mortality effect of an extremely hot day declined by about 80% between 1900-1959 and 1960-2004. As a consequence, days with temperatures exceeding 90°F were responsible for about 600 premature fatalities annually in the 1960-2004 period, compared to the approximately 3,600 premature fatalities that would have occurred if the temperature-mortality relationship from before 1960 still prevailed. Second, the adoption of residential air conditioning (AC) explains essentially the entire decline in the temperature-mortality relationship. In contrast, increased access to electricity and health care seem not to affect mortality on extremely hot days. Residential AC appears to be both the most promising technology to help poor countries mitigate the temperature related mortality impacts of climate change and, because fossil fuels are the least expensive source of energy, a technology whose proliferation will speed up the rate of climate change
Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century
A critical part of adapting to the higher temperatures that climate change brings will be the deployment of existing technologies to new sectors and regions. This paper examines the evolution of the temperature-mortality relationship over the course of the entire 20th century in the United States both for its own interest but also to identify potentially useful adaptations that may be useful in the coming decades. There are three primary findings. First, the mortality impact of days with a mean temperature exceeding 80° F has declined by about 70%. Almost the entire decline occurred after 1960. There are about 14,000 fewer fatalities annually than if the pre-1960 impacts of high temperature on mortality still prevailed. Second, the diffusion of residential air conditioning can explain essentially the entire decline in hot day related fatalities. Third, using Dubin-McFadden's discrete-continuous model, we estimate that the present value of US consumer surplus from the introduction of residential air conditioning (AC) in 1960 ranges from 186 billion ($2012) with a 5% discount rate. The monetized value of the mortality reductions on high temperature days due to AC accounts for a substantial fraction of these welfare gains
On the use of fractional Brownian motion simulations to determine the 3D statistical properties of interstellar gas
Based on fractional Brownian motion (fBm) simulations of 3D gas density and
velocity fields, we present a study of the statistical properties of
spectro-imagery observations (channel maps, integrated emission, and line
centroid velocity) in the case of an optically thin medium at various
temperatures. The power spectral index gamma_W of the integrated emission is
identified with that of the 3D density field (gamma_n) provided the medium's
depth is at least of the order of the largest transverse scale in the image,
and the power spectrum of the centroid velocity map is found to have the same
index gamma_C as that of the velocity field (gamma_v). Further tests with
non-fBm density and velocity fields show that this last result holds, and is
not modified either by the effects of density-velocity correlations. A
comparison is made with the theoretical predictions of Lazarian & Pogosyan
(2000).Comment: 28 pages, 14 figures, accepted for publication in ApJ. For preprint
with higher-resolution figures, see
http://www.cita.utoronto.ca/~mamd/miville_fbm2003.pd
Rotational Correlation Functions of Single Molecules
Single molecule rotational correlation functions are analyzed for several
reorientation geometries. Even for the simplest model of isotropic rotational
diffusion our findings predict non-exponential correlation functions to be
observed by polarization sensitive single molecule fluorescence microscopy.
This may have a deep impact on interpreting the results of molecular
reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure
Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue
We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC),
containing more than 100,000 point sources detected at 7 and/or 15 micron in
the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the
Infrared Space Observatory (ISO). These sources are cross-identified, wherever
possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The
overall surface covered by the ISOGAL survey is about 16 square degrees, mostly
(95%) distributed near the Galactic plane (|b| < 1 deg), where the source
extraction can become confusion limited and perturbed by the high background
emission. Therefore, special care has been taken aimed at limiting the
photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10
mJy. The present paper gives a complete description of the entries and the
information which can be found in this catalogue, as well as a detailed
discussion of the data processing and the quality checks which have been
completed. The catalogue is available via the VizieR Service at the Centre de
Donn\'ees Astronomiques de Strasbourg (CDS,
http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the
Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete
version of this paper, including a detailed description of the data processing,
is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32
figures and detailed description of the data processing is available here:
http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
Autonomous Bursting in a Homoclinic System
A continuous train of irregularly spaced spikes, peculiar of homoclinic
chaos, transforms into clusters of regularly spaced spikes, with quiescent
periods in between (bursting regime), by feeding back a low frequency portion
of the dynamical output. Such autonomous bursting results to be extremely
robust against noise; we provide experimental evidence of it in a CO2 laser
with feedback. The phenomen here presented display qualitative analogies with
bursting phenomena in neurons.Comment: Submitted to Phys. Rev. Lett., 14 pages, 5 figure
A Broadband Study of Galactic Dust Emission
We have combined infrared data with HI, H2 and HII surveys in order to
spatially decompose the observed dust emission into components associated with
different phases of the gas. An inversion technique is applied. For the
decomposition, we use the IRAS 60 and 100 micron bands, the DIRBE 140 and 240
micron bands, as well as Archeops 850 and 2096 micron wavelengths. In addition,
we apply the decomposition to all five WMAP bands. We obtain longitude and
latitude profiles for each wavelength and for each gas component in carefully
selected Galactic radius bins.We also derive emissivity coefficients for dust
in atomic, molecular and ionized gas in each of the bins.The HI emissivity
appears to decrease with increasing Galactic radius indicating that dust
associated with atomic gas is heated by the ambient interstellar radiation
field (ISRF). By contrast, we find evidence that dust mixed with molecular
clouds is significantly heated by O/B stars still embedded in their progenitor
clouds. By assuming a modified black-body with emissivity law lambda^(-1.5), we
also derive the radial distribution of temperature for each phase of the gas.
All of the WMAP bands except W appear to be dominated by emission from
something other than normal dust, most likely a mixture of thermal
bremstrahlung from diffuse ionized gas, synchrotron emission and spinning dust.
Furthermore, we find indications of an emissivity excess at long wavelengths
(lambda > 850 micron) in the outer Galaxy (R > 8.9 kpc). This suggests either
the existence of a very cold dust component in the outer Galaxy or a
temperature dependence of the spectral emissivity index. Finally, it is shown
that ~ 80% of the total FIR luminosity is produced by dust associated with
atomic hydrogen, in agreement with earlier findings by Sodroski et al. (1997).Comment: accepted for publication by A&
CMBPol Mission Concept Study: Prospects for polarized foreground removal
In this report we discuss the impact of polarized foregrounds on a future
CMBPol satellite mission. We review our current knowledge of Galactic polarized
emission at microwave frequencies, including synchrotron and thermal dust
emission. We use existing data and our understanding of the physical behavior
of the sources of foreground emission to generate sky templates, and start to
assess how well primordial gravitational wave signals can be separated from
foreground contaminants for a CMBPol mission. At the estimated foreground
minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a
primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small
patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky
we expect the foreground amplitude to exceed the primordial signal by about a
factor of eight at the foreground minimum and on scales of two degrees. Only on
the largest scales does the polarized foreground amplitude exceed the
primordial signal by a larger factor of about 20. The prospects for detecting
an r=0.01 signal including degree-scale measurements appear promising, with 5
sigma_r ~0.003 forecast from multiple methods. A mission that observes a range
of scales offers better prospects from the foregrounds perspective than one
targeting only the lowest few multipoles. We begin to explore how optimizing
the composition of frequency channels in the focal plane can maximize our
ability to perform component separation, with a range of typically 40 < nu <
300 GHz preferred for ten channels. Foreground cleaning methods are already in
place to tackle a CMBPol mission data set, and further investigation of the
optimization and detectability of the primordial signal will be useful for
mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution
to the CMBPol Mission Concept Study, v2, matches AIP versio
- …
