1,901 research outputs found

    A Model for SEP Escape

    Get PDF
    Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS)

    The Effect of Magnetic Topology on the Escape of Flare Particles

    Get PDF
    Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS)

    Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    Full text link
    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. (2006) proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets. We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare current sheet. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions.Comment: Accepted for publication in The Astrophysical Journal (2016

    New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    Get PDF
    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. Many models for spacetime foam are defined by the accumulation power α\alpha, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here α\alpha is defined by theexpression for the path-length fluctuations, δ\delta \ell, of a source at distance \ell, wherein δ1αPα\delta \ell \simeq \ell^{1 - \alpha} \ell_P^{\alpha}, with P\ell_P being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\em Chandra} to set the constraint α0.58\alpha \gtrsim 0.58, which rules out the random walk model (with α=1/2\alpha = 1/2). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {\em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: α0.67\alpha \gtrsim 0.67 and α0.72\alpha \gtrsim 0.72, respectively. These limits on α\alpha seem to rule out α=2/3\alpha = 2/3, the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres

    A model for straight and helical solar jets: II. Parametric study of the plasma beta

    Get PDF
    Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g., in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma β\beta on the generation and properties of solar-like jets. The parametric study validates our model of jets for plasma β\beta ranging from 10310^{-3} to 11, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various β1\beta \le 1. This study introduces the new result that the plasma β\beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.Comment: Accepted in Astronomy and Astrophysic

    CME Onset and Take-Off

    Get PDF
    For understanding and eventually predicting coronal mass ejections/eruptive flares, two critical questions must be answered: What is the mechanism for eruption onset, and what is the mechanism for the rapid acceleration? We address these questions in the context of the breakout model using 2.5D MHD simulations with adaptive mesh refinement (AMR). The AMR capability allowed us to achieve ultra-high numerical resolution and, thereby, determine the influence of the effective Lundquist number on the eruption. Our calculations show that, at least, for the breakout model, the onset of reconnection external to the highly sheared filament channel is the onset mechanism. Once this reconnection turns on, eruption is inevitable. However, as long as this is the only reconnection in the system, the eruption remains slow. We find that the eruption undergoes an abrupt "take-off" when the flare reconnection below the erupting plasmoid develops significant reconnection jets. We conclude that in fast CMEs, flare reconnection is the primary mechanism responsible for both flare heating and CME acceleration. We discuss the implications of these results for SDO observations and describe possible tests of the model
    corecore