858 research outputs found
Behavioural aspects of smoking (both passive and active) and alcohol consumption on the risk of myocardial infarction
Objectives: To investigate the effect of alcohol consumption and of passive and active smoking on the risk of myocardial infarction (MI). Methods: Data on 429 cases with MI and 434 controls was obtained through an interviewer-led questionnaire as part of the Maltese Acute Myocardial Infarction (MAMI) Study. Regular alcohol drinkers were defined as subjects having at least one drink per week for one year and binge drinkers as having six or more drinks on one occasion this last year. Current smokers were excluded from the analysis of passive smoking. Odds ratios (AdjOR) were adjusted for age, gender, smoking/drinking alcohol, hypertension, diabetes, hypercholesterolaemia and BMI. Results: Regular alcohol drinkers were protected against MI [AdjOR 0.6 (95%CI 0.4-0.8)]. The risk of MI associated with binge drinking varies with the frequency, reaching an AdjOR of 5.8 (95%CI 1.2-27.1) in daily binge drinkers. The AdjOR for current smokers was 3.1 (95%CI 2.0-4.9) and for ex-smokers 1.6 (95%CI 1.1-2.4). Passive smoking also increased the risk of MI [AdjOR 3.0 (95%CI 1.7-5.4)]. Passive smoke exposure in a home setting had a greater deleterious effect [AdjOR 2.8 (95%CI 1.6-4.7)] than exposure in a public setting [AdjOR 1.4 (95%CI 0.9-2.2)]. While periods of 1 hour or longer of passive smoke exposure were found to be deleterious in both the investigated settings, exposure for less than 1 hour was only a risk factor in a home setting. Conclusion: The effect of alcohol consumption on the risk for MI varies from protective to extremely deleterious depending on the frequency of drinking. Daily binge drinking is associated with a high risk of MI. Smoking, even passive smoking, is a risk factor of MI. The effect of passive smoking on the risk of MI is greater in a home than in a public setting
Fixation times in evolutionary games under weak selection
In evolutionary game dynamics, reproductive success increases with the
performance in an evolutionary game. If strategy performs better than
strategy , strategy will spread in the population. Under stochastic
dynamics, a single mutant will sooner or later take over the entire population
or go extinct. We analyze the mean exit times (or average fixation times)
associated with this process. We show analytically that these times depend on
the payoff matrix of the game in an amazingly simple way under weak selection,
ie strong stochasticity: The payoff difference is a linear
function of the number of individuals , . The
unconditional mean exit time depends only on the constant term . Given that
a single mutant takes over the population, the corresponding conditional
mean exit time depends only on the density dependent term . We demonstrate
this finding for two commonly applied microscopic evolutionary processes.Comment: Forthcoming in New Journal of Physic
Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex
The ventricular zone (VZ) of the developing cerebral cortex is a pseudostratified epithelium that contains progenitors undergoing precisely regulated divisions at its most apical side, the ventricular lining (VL). Mitotic perturbations can contribute to pathological mechanisms leading to cortical malformations. The HeCo mutant mouse exhibits subcortical band heterotopia (SBH), likely to be initiated by progenitor delamination from the VZ early during corticogenesis. The causes for this are however, currently unknown. Eml1, a microtubule (MT)-associated protein of the EMAP family, is impaired in these mice. We first show that MT dynamics are perturbed in mutant progenitor cells in vitro. These may influence interphase and mitotic MT mechanisms and indeed, centrosome and primary cilia were altered and spindles were found to be abnormally long in HeCo progenitors. Consistently, MT and spindle length regulators were identified in EML1 pulldowns from embryonic brain extracts. Finally, we found that mitotic cell shape is also abnormal in the mutant VZ. These previously unidentified VZ characteristics suggest altered cell constraints which may contribute to cell delamination
Asymptomatic immunoglobulin light chain amyloidosis (AL) at the time of diagnostic bone marrow biopsy in newly diagnosed patients with multiple myeloma and smoldering myeloma. A series of 144 cases and a review of the literature
Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib
Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic
Evolutionary Games with Affine Fitness Functions: Applications to Cancer
We analyze the dynamics of evolutionary games in which fitness is defined as
an affine function of the expected payoff and a constant contribution. The
resulting inhomogeneous replicator equation has an homogeneous equivalent with
modified payoffs. The affine terms also influence the stochastic dynamics of a
two-strategy Moran model of a finite population. We then apply the affine
fitness function in a model for tumor-normal cell interactions to determine
which are the most successful tumor strategies. In order to analyze the
dynamics of concurrent strategies within a tumor population, we extend the
model to a three-strategy game involving distinct tumor cell types as well as
normal cells. In this model, interaction with normal cells, in combination with
an increased constant fitness, is the most effective way of establishing a
population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com,
http://dx.doi.org/10.1007/s13235-011-0029-
Mathematical modeling of the metastatic process
Mathematical modeling in cancer has been growing in popularity and impact
since its inception in 1932. The first theoretical mathematical modeling in
cancer research was focused on understanding tumor growth laws and has grown to
include the competition between healthy and normal tissue, carcinogenesis,
therapy and metastasis. It is the latter topic, metastasis, on which we will
focus this short review, specifically discussing various computational and
mathematical models of different portions of the metastatic process, including:
the emergence of the metastatic phenotype, the timing and size distribution of
metastases, the factors that influence the dormancy of micrometastases and
patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie
Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy
International audienceMyotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM
Evolutionary dynamics of tumor-stroma interactions in multiple myeloma
Cancer cells and stromal cells cooperate by exchanging diffusible factors that sustain tumor growth, a form of frequency-dependent selection that can be studied in the framework of evolutionary game theory. In the case of multiple myeloma, three types of cells (malignant plasma cells, osteoblasts and osteoclasts) exchange growth factors with different effects, and tumor-stroma interactions have been analysed using a model of cooperation with pairwise interactions. Here we show that a model in which growth factors have autocrine and paracrine effects on multiple cells, a more realistic assumption for tumor-stroma interactions, leads to different results, with implications for disease progression and treatment. In particular, the model reveals that reducing the number of malignant plasma cells below a critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast and osteoblast, a result in line with current therapies against multiple myeloma
Stem cell: from basic theoretical assumptions and mathematical concepts to the computational models
- …
