531 research outputs found
Phase ordering and shape deformation of two-phase membranes
Within a coupled-field Ginzburg-Landau model we study analytically phase
separation and accompanying shape deformation on a two-phase elastic membrane
in simple geometries such as cylinders, spheres and tori. Using an exact
periodic domain wall solution we solve for the shape and phase ordering field,
and estimate the degree of deformation of the membrane. The results are
pertinent to a preferential phase separation in regions of differing curvature
on a variety of vesicles.Comment: 4 pages, submitted to PR
Recommended from our members
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016.
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Kinematics of the Southern Rhodope Core Complex (North Greece)
The Southern Rhodope Core Complex is a wide metamorphic dome exhumed in the northern Aegean as a result of large-scale extension
from mid-Eocene to mid-Miocene times. Its roughly triangular shape is bordered on the SW by the Jurassic and Cretaceous metamorphic
units of the Serbo-Macedonian in the Chalkidiki peninsula and on the N by the eclogite bearing gneisses of the Sideroneron
massif. The main foliation of metamorphic rocks is flat lying up to 100 km core complex width. Most rocks display a stretching
lineation trending NEâ SW. The Kerdylion detachment zone located at the SW controlled the exhumation of the core complex from
middle Eocene to mid-Oligocene. From late Oligocene to mid-Miocene exhumation is located inside the dome and is accompanied
by the emplacement of the synkinematic plutons of Vrondou and Symvolon. Since late Miocene times, extensional basin sediments
are deposited on top of the exhumed metamorphic and plutonic rocks and controlled by steep normal faults and flat-ramp-type
structures. Evidence from Thassos Island is used to illustrate the sequence of deformation from stacking by thrusting of the
metamorphic pile to ductile extension and finally to development of extensional Plio-Pleistocene sedimentary basin. Paleomagnetic
data indicate that the core complex exhumation is controlled by a 30� dextral rotation of the Chalkidiki block. Extensional
displacements are restored using a pole of rotation deduced from the curvature of stretching lineation trends at core complex
scale. It is argued that the Rhodope Core Complex has recorded at least 120 km of extension in the North Aegean, since the
last 40 My
Nucleon scalar matrix elements with twisted mass fermions
The XXIX International Symposium on Lattice Field Theory, Lattice 2011We investigate scalar matrix elements of the nucleon using flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of . We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Characterization of relativistic electron bunch duration and travelling wave structure phase velocity based on momentum spectra measurements on the ARES linac at DESY
The ARES linac at DESY aims to generate and characterize ultrashort electron
bunches (fs to sub-fs duration) with high momentum and arrival time stability
for the purpose of applications related to accelerator R&D, e.g. development of
advanced and compact diagnostics and accelerating structures, test of new
accelerator components, medical applications studies, machine learning, etc.
During its commissioning phase, the bunch duration characterization of the
electron bunches generated at ARES has been performed with an RF-phasing
technique relying on momentum spectra measurements, using only common
accelerator elements (RF accelerating structures and magnetic spectrometers).
The sensitivity of the method allowed highlighting different response times for
Mo and Cs2Te cathodes. The measured electron bunch duration in a wide range of
machine parameters shows excellent agreement overall with the simulation
predictions, thus demonstrating a very good understanding of the ARES operation
on the bunch duration aspect. The importance of a precise in-situ experimental
determination of the phase velocity of the first travelling wave accelerating
structure after the electron source, for which we propose a simple new
beam-based method precise down to sub-permille variation respective to the
speed of light in vacuum, is emphasized for this purpose. A minimum bunch
duration of 20 fs rms, resolution-limited by the space charge forces, is
reported. This is, to the best of our knowledge, around 4 times shorter than
what has been previously experimentally demonstrated based on RF-phasing
techniques with a single RF structure. The present study constitutes a strong
basis for future time characterization down to the sub-fs level at ARES, using
dedicated X-band transverse deflecting structures.Comment: 17 pages, 11 figures. To be submitted to Physical Review Accelerators
and Beam
Urban Green Parks for Long-term Subjective Well-being: Empirical Relationships between Personal Characteristics, Park Characteristics, Park Use, Sense of Place, and Satisfaction with Life in the Netherlands
As our living environment is becoming increasingly urbanized, this puts the livability, health, and quality of life in cities under pressure. Due to the urbanization process, urban green spaces are under threat of becoming scarce, while it is recognized that these green spaces can positively contribute to the subjective well-being of citizens. It is thus important to maximize the use and benefits derived from green spaces by designing them as positively experienced places. The aim of this research is to gain more empirical insights on the relationships between personal and park characteristics, park use behavior, sense of place, and park visitors’ long-term subjective well-being (i.e., life satisfaction). An online questionnaire was administered to participants in two medium-sized cities in The Netherlands, namely Eindhoven and ‘s-Hertogenbosch. Data were analyzed using a structural equation model. The results of this study show that the appreciation of facilities and the absence of disturbances positively influence the use and sense of place of a park. Furthermore, the findings show that sense of place has a positive influence on life satisfaction. The findings can be used by designers and policy-makers as guidelines to improve existing parks or to design new parks that support the subjective well-being of individuals in The Netherlands
Recommended from our members
Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust
In May-June 2006, airborne and ground-based solar (0.3-2.2 μm) and thermal infrared (4-42 μm) radiation measurements have been performed in Morocco within the Saharan Mineral Dust Experiment (SAMUM). Upwelling and downwelling solar irradiances have been measured using the Spectral Modular Airborne Radiation Measurement System (SMART)-Albedometer. With these data, the areal spectral surface albedo for typical surface types in southeastern Morocco was derived from airborne measurements for the first time. The results are compared to the surface albedo retrieved from collocated satellite measurements, and partly considerable deviations are observed. Using measured surface and atmospheric properties, the spectral and broad-band dust radiative forcing at top-of-atmosphere (TOA) and at the surface has been estimated. The impact of the surface albedo on the solar radiative forcing of Saharan dust is quantified. In the SAMUM case of 19 May 2006, TOA solar radiative forcing varies by 12 W m-2 per 0.1 surface-albedo change. For the thermal infrared component, values of up to +22 W m-2 were derived. The net (solar plus thermal infrared) TOA radiative forcing varies between -19 and +24 W m-2 for a broad-band solar surface albedo of 0.0 and 0.32, respectively. Over the bright surface of southeastern Morocco, the Saharan dust always has a net warming effect. © 2008 The Author Journal compilation © 2008 Blackwell Munksgaard
- …
