13,770 research outputs found

    Disentanglement and Decoherence by Open System Dynamics

    Full text link
    The destruction of quantum interference, decoherence, and the destruction of entanglement both appear to occur under the same circumstances. To address the connection between these two phenomena, we consider the evolution of arbitrary initial states of a two-particle system under open system dynamics described by a class of master equations which produce decoherence of each particle. We show that all initial states become separable after a finite time, and we produce the explicit form of the separated state. The result extends and amplifies an earlier result of Di\'osi. We illustrate the general result by considering the case in which the initial state is an EPR state (in which both the positions and momenta of a particle pair are perfectly correlated). This example clearly illustrates how the spreading out in phase space produced by the environment leads to certain disentanglement conditions becoming satisfied.Comment: 15 Page

    Limitations of Kramers-Kronig transform for calculation of the DC conductance magnitude from dielectric measurements

    Get PDF
    The Kramers-Kronig (K-K) transform relates the real and imaginary parts of the complex susceptibility as a consequence of the principle of causality. It is a special case of the Hilbert transform and it is often used for estimation of the DC conductance from dielectric measurements. In this work, the practical limitations of a numerical implementation of the Kramers-Kronig transform was investigated in the case of materials that exhibit both DC conductance and quasi-DC (QDC) charge transport processes such as epoxy resins. The characteristic feature of a QDC process is that the real and imaginary parts of susceptibility (permittivity) follow fractional power law dependences with frequency with the low frequency exponent approaching -1. Dipolar relaxation in solids on the other hand has a lower frequency exponent <1. The computational procedure proposed by Jonscher for calculation of the K-K transform involves extrapolation and truncation of the data to low frequencies so that convergence of the integrals is ensured. The validity of the analysis is demonstrated by performing K-K transformation on real experimental data and on theoretical data generated using the Dissado-Hill function. It has been found that the algorithm works well for dielectric relaxation responses but it is apparent that it does not work in the case of a low frequency power law in which the low frequency exponent approaches -1, i.e. in the case of QDC responses. In this case convergence can only be guaranteed by extrapolating the low frequency power law over many decades towards zero frequency

    Influence of the temperature on the dielectric properties of epoxy resins

    Get PDF
    Electrical degradation processes in epoxy resins, such as electrical treeing, were found to be dependent on the temperature at which the experiments were carried out. Therefore, it is of considerable research interest to study the influence of temperature on the dielectric properties of the polymers and to relate the effect of temperature on these properties to the possible electrical degradation mechanisms. In this work, the dielectric properties of two different epoxy resin systems have been characterized via dielectric spectroscopy. The epoxy resins used were bisphenol-A epoxy resins Araldite CY1301 and Araldite CY1311, the later being a modified version of the former with added plasticizer. The CY1301 samples were tested below and above their glass transition temperature, while the CY1311 were tested well above it. Both epoxy systems possess similar behaviour above the glass transition temperature, e.g. in a flexible state, which can be characterized as a low frequency dispersion (LFD). On the other hand, it was found that below the glass transition temperature CY1301 samples have almost “flat” dielectric response in the frequency range considered. The influence of possible interfacial features on the measured results is discussed

    Entrepreneurship as nexus of change: the syncretistic production of the future

    Get PDF
    This paper deals with the issue of how the future is created and the mechanisms through which it is produced and conceived. Key to this process appears to be social interaction and how it is used to bring about change. Examining the entrepreneurial context by qualitative longitudinal research techniques, the study considers the situations of three entrepreneurs. It demonstrates that the web of relationships in which individuals are engaged provide the opportunity to enact the environment in new ways, thus producing organizations for the future. It further provides empirical evidence for a Heideggerian reading of strategy-as-practice, extending this conceptualization to account for the temporal dimension

    Architectural Urbanism: Melbourne/Seoul

    Full text link
    Architectural Urbanism is an ambition and sensibility for propositions that address the context of the city within the operative scale of the small architectural project. Architectural urbanism represents a tailoring of projects to the local; to the materiality and specificity of the everyday; and to the grain and substance of the location above all else. Architectural urbanism is less about erasure and more about insertion; infill; the weaving of old and new and the dynamics that evolve from subtle and careful manipulation of the city in detail. The exhibition explores commonality in the apparently different contexts of both cities – speculating on these as forms of ‘architectural urbanism' in the contemporary city of the Asia-Pacific at its northern and southern extremes. Architectural projects from five Melbourne architectural practitioners have been selected to exhibit in Seoul. The practices are: Muir Mendes, Baracco + Wright, Iredale Pederson Hook, NMBW Architecture Studio and Kerstin Thompson Architects - all of whom have strong links to the RMIT Architecture design research and teaching community. Melanie Dodd co-curated the exhibition

    Integrable Quartic Potentials and Coupled KdV Equations

    Full text link
    We show a surprising connection between known integrable Hamiltonian systems with quartic potential and the stationary flows of some coupled KdV systems related to fourth order Lax operators. In particular, we present a connection between the Hirota-Satsuma coupled KdV system and (a generalisation of) the 1:6:11:6:1 integrable case quartic potential. A generalisation of the 1:6:81:6:8 case is similarly related to a different (but gauge related) fourth order Lax operator. We exploit this connection to derive a Lax representation for each of these integrable systems. In this context a canonical transformation is derived through a gauge transformation.Comment: LaTex, 11 page

    Titanium-Oxygen Bond Length -Bond Valence Relationship

    Get PDF
    A bond length–bond valence correlation is a simple method of checking and evaluating molecular structures and is of great interest in chemistry, biology, geology, and material science. Recently, we used quantum-mechanical arguments to derive Pauling’s bond length-valence relationship and to define the adjustable fitting parameter b in terms of atomic-orbital exponents. Improved orbital exponents were generated for elements 1-103 using published atomic radii and single-bond covalent radii as well as a continuous function for effective principal quantum number. In this study, we use orbital exponents for titanium (Ti) and oxygen (O) to generate a bond length-valence relationship for Ti-O bonds. Recent crystallographic Ti-O bond lengths from 32 environments were collected and converted to Ti-O bond valences to check the reliability of the bond length-valence relationship where Ro was found (bond length of unit valence). This relationship is expected to apply to any Ti-O bond regardless of environment, physical state, or oxidation number
    corecore