2,846 research outputs found
Integrals of motion and the shape of the attractor for the Lorenz model
In this paper, we consider three-dimensional dynamical systems, as for
example the Lorenz model. For these systems, we introduce a method for
obtaining families of two-dimensional surfaces such that trajectories cross
each surface of the family in the same direction. For obtaining these surfaces,
we are guided by the integrals of motion that exist for particular values of
the parameters of the system. Nonetheless families of surfaces are obtained for
arbitrary values of these parameters. Only a bounded region of the phase space
is not filled by these surfaces. The global attractor of the system must be
contained in this region. In this way, we obtain information on the shape and
location of the global attractor. These results are more restrictive than
similar bounds that have been recently found by the method of Lyapunov
functions.Comment: 17 pages,12 figures. PACS numbers : 05.45.+b / 02.30.Hq Accepted for
publication in Physics Letters A. e-mails : [email protected] &
[email protected]
Variational bound on energy dissipation in turbulent shear flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in plane Couette
flow, bridging the entire range from low to asymptotically high Reynolds
numbers. Our variational bound exhibits structure, namely a pronounced minimum
at intermediate Reynolds numbers, and recovers the Busse bound in the
asymptotic regime. The most notable feature is a bifurcation of the minimizing
wavenumbers, giving rise to simple scaling of the optimized variational
parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz
file from [email protected]
THE FEDERAL AGRICULTURE IMPROVEMENT AND REFORM ACT OF 1996: COMMODITY AND CONSERVATION PROGRAMS
The Federal Agriculture Improvement and Reform Act contains major revisions in farm commodity programs. This paper summarizes the major provision of legislation. Because many program implementation rules must be developed, program participants are advised to consult their local office of the USDA Farm Service Agency for final program provisions.Agricultural and Food Policy,
A PREVIEW OF THE 1996 FARM PROGRAM PROVISIONS
The U.S. House of Representatives and Senate have written farm bills that contain major revisions in farm commodity programs. Differences in these bills, House bill HR 2854 and Senate bill S 1541, must now be resolved by a Conference Committee, approved by a final vote of both houses of Congress, and signed by the President. Though differences in the bills do exist, the bills contain many similar provisions that appear likely to be included in the final version of the bill. This paper summarizes the major provisions of these bills and identifies areas where differences must be resolved by the Conference Committee.Agricultural and Food Policy,
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
A random walker on a ratchet potential: Effect of a non Gaussian noise
We analyze the effect of a colored non Gaussian noise on a model of a random
walker moving along a ratchet potential. Such a model was motivated by the
transport properties of motor proteins, like kinesin and myosin. Previous
studies have been realized assuming white noises. However, for real situations,
in general we could expect that those noises be correlated and non Gaussian.
Among other aspects, in addition to a maximum in the current as the noise
intensity is varied, we have also found another optimal value of the current
when departing from Gaussian behavior. We show the relevant effects that arise
when departing from Gaussian behavior, particularly related to current's
enhancement, and discuss its relevance for both biological and technological
situations.Comment: Submitted to Europ.Phys. J. B (LaTex, 16 pgs, 8 figures
Convolutional neural networks applied to high-frequency market microstructure forecasting
Highly sophisticated artificial neural networks have achieved unprecedented performance across a variety of complex real-world problems over the past years, driven by the ability to detect significant patterns autonomously. Modern electronic stock markets produce large volumes of data, which are very suitable for use with these algorithms. This research explores new scientific ground by designing and evaluating a convolutional neural network in predicting future financial outcomes. A visually inspired transformation process translates high-frequency market microstructure data from the London Stock Exchange into four market-event based input channels, which are used to train six deep networks. Primary results indicate that con-volutional networks behave reasonably well on this task and extract interesting microstructure patterns, which are in line with previous theoretical findings. Furthermore, it demonstrates a new approach using modern deep-learning techniques for exploiting and analysing market microstructure behaviour
Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study
In this paper a detailed numerical study (in frames of the Slonczewski
formalism) of magnetization oscillations driven by a spin-polarized current
through a thin elliptical nanoelement is presented. We show that a
sophisticated micromagnetic model, where a polycrystalline structure of a
nanoelement is taken into account, can explain qualitatively all most important
features of the magnetization oscillation spectra recently observed
experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely:
existence of several equidistant spectral bands, sharp onset and abrupt
disappearance of magnetization oscillations with increasing current, absence of
the out-of-plane regime predicted by a macrospin model and the relation between
frequencies of so called small-angle and quasichaotic oscillations. However, a
quantitative agreement with experimental results (especially concerning the
frequency of quasichaotic oscillations) could not be achieved in the region of
reasonable parameter values, indicating that further model refinement is
necessary for a complete understanding of the spin-driven magnetization
precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions
on the page have been changed to ensure correct placements of the figure
caption
DNA transport by a micromachined Brownian ratchet device
We have micromachined a silicon-chip device that transports DNA with a
Brownian ratchet that rectifies the Brownian motion of microscopic particles.
Transport properties for a DNA 50mer agree with theoretical predictions, and
the DNA diffusion constant agrees with previous experiments. This type of
micromachine could provide a generic pump or separation component for DNA or
other charged species as part of a microscale lab-on-a-chip. A device with
reduced feature size could produce a size-based separation of DNA molecules,
with applications including the detection of single nucleotide polymorphisms.Comment: Latex: 8 pages, 4 figure
- …
