7,128 research outputs found

    Comparison of Various Mean Field Formulations for Retrieving Refractive Indices of Aerosol Particles Containing Inclusions

    Get PDF
    Application of effective medium approximation (EMA) methods to two-component systems are presented. Systems studied are composed of water, sulfate, soot, and dust as these are commonly encountered atmospheric aerosol components. Atmospheric models often employ EMAs to include internally mixed aerosols without the computational burden of exact theory. In the current work, several types of mixing rules (Maxwell-Garnet, Bruggeman, and coherent potential approximation) have been applied to various two-component internally mixed particles at 550 nm using volume fractions of the minor component below 0.1. As expected, results show that the formulations tested produce very similar effective refractive indices indicating that electric field interactions between inclusions is negligible at the tested volume fractions. This indicates that the differences in component refractive index has only a minor effect on the validity of the EMA at the tested volume fractions. In all cases considered, the linear average of the refractive indices of the two components provides an upper limit for the EMAs

    A new species of Dialeurodes Cockerell (Hemiptera: Aleyrodidae) on Schefflera Forst and Forst in Florida

    Get PDF
    Descriptions of pupal cases of Dialeurodes schefflerae, new species, as well as distribution records are presented. This species is known to occur in Florida, Hawaii and Puerto Rico appearing to feed only on species of Schefflera Forst and Forst. This restriction to plant hosts in the Asian genus Schefflera, along with its affinities with Dialeurodes agalmae Takahashi, Dialeurodes citri (Ashmead) and Dialeurodes kirkaldyi (Kotinsky), suggests it is an invasive species, probably endemic to the Asian region

    A Modified Distortion Measurement Algorithm for Shape Coding

    Get PDF
    Efficient encoding of object boundaries has become increasingly prominent in areas such as content-based storage and retrieval, studio and television post-production facilities, mobile communications and other real-time multimedia applications. The way distortion between the actual and approximated shapes is measured however, has a major impact upon the quality of the shape coding algorithms. In existing shape coding methods, the distortion measure do not generate an actual distortion value, so this paper proposes a new distortion measure, called a modified distortion measure for shape coding (DMSC) which incorporates an actual perceptual distance. The performance of the Operational Rate Distortion optimal algorithm [1] incorporating DMSC has been empirically evaluated upon a number of different natural and synthetic arbitrary shapes. Both qualitative and quantitative results confirm the superior results in comparison with the ORD lgorithm for all test shapes, without any increase in computational complexity

    Distributed and Load-Adaptive Self Configuration in Sensor Networks

    Get PDF
    Proactive self-configuration is crucial for MANETs such as sensor networks, as these are often deployed in hostile environments and are ad hoc in nature. The dynamic architecture of the network is monitored by exchanging so-called Network State Beacons (NSBs) between key network nodes. The Beacon Exchange rate and the network state define both the time and nature of a proactive action to combat network performance degradation at a time of crisis. It is thus essential to optimize these parameters for the dynamic load profile of the network. This paper presents a novel distributed adaptive optimization Beacon Exchange selection model which considers distributed network load for energy efficient monitoring and proactive reconfiguration of the network. The results show an improvement of 70% in throughput, while maintaining a guaranteed quality-of- service for a small control-traffic overhead
    corecore