5,174 research outputs found

    Today\u27s Climate of Opinion Order, the Philosophic Basis of Natural Law

    Get PDF

    Human Rights and the Law

    Get PDF

    Skeleton as a probe of the cosmic web: the 2D case

    Full text link
    We discuss the skeleton as a probe of the filamentary structures of a 2D random field. It can be defined for a smooth field as the ensemble of pairs of field lines departing from saddle points, initially aligned with the major axis of local curvature and connecting them to local maxima. This definition is thus non local and makes analytical predictions difficult, so we propose a local approximation: the local skeleton is given by the set of points where the gradient is aligned with the local curvature major axis and where the second component of the local curvature is negative. We perform a statistical analysis of the length of the total local skeleton, chosen for simplicity as the set of all points of space where the gradient is either parallel or orthogonal to the main curvature axis. In all our numerical experiments, which include Gaussian and various non Gaussian realizations such as \chi^2 fields and Zel'dovich maps, the differential length is found within a normalization factor to be very close to the probability distribution function of the smoothed field. This is in fact explicitly demonstrated in the Gaussian case. This result might be discouraging for using the skeleton as a probe of non Gausiannity, but our analyses assume that the total length of the skeleton is a free, adjustable parameter. This total length could in fact be used to constrain cosmological models, in CMB maps but also in 3D galaxy catalogs, where it estimates the total length of filaments in the Universe. Making the link with other works, we also show how the skeleton can be used to study the dynamics of large scale structure.Comment: 15 pages, 11 figures, submitted to MNRA

    Raman spectroscopy study of the interface structure in (CaCuO2)n/(SrTiO3)m superlattices

    Full text link
    Raman spectra of CaCuO2/SrTiO3 superlattices show clear spectroscopic marker of two structures formed in CaCuO2 at the interface with SrTiO3. For non-superconducting superlattices, grown in low oxidizing atmosphere, the 425 cm-1 frequency of oxygen vibration in CuO2 planes is the same as for CCO films with infinite layer structure (planar Cu-O coordination). For superconducting superlattices grown in highly oxidizing atmosphere, a 60 cm-1 frequency shift to lower energy occurs. This is ascribed to a change from planar to pyramidal Cu-O coordination because of oxygen incorporation at the interface. Raman spectroscopy proves to be a powerful tool for interface structure investigation

    Effect of Al doping on the optical phonon spectrum in Mg(1-x)Al(x)B(2)

    Full text link
    Raman and infrared absorption spectra of Mg(1-x)Al(x)B(2) have been collected for 0<x<0.5 in the spectral range of optical phonons. The x-dependence of the peak frequency, the width and the intensity of the observed Raman lines has been carefully analized. A peculiar x-dependence of the optical modes is pointed out for two different Al doping ranges. In particular the onset of the high-doping structural phase previously observed in diffraction measurements is marked by the appearence of new spectral components at high frequencies. A connection between the whole of our results and the observed suppression of superconductivity in the high doping region is established

    Far infrared properties of the rare-earth scandate DyScO3

    Full text link
    We present reflectance measurements in the infrared region on a single crystal the rare earth scandate DyScO3. Measurements performed between room temperature and 10 K allow to determine the frequency of the infrared-active phonons, never investigated experimentally, and to get information on their temperature dependence. A comparison with the phonon peak frequency resulting from ab-initio computations is also provided. We finally report detailed data on the frequency dependence of the complex refractive index of DyScO3 in the terahertz region, which is important in the analysis of terahertz measurements on thin films deposited on DyScO3

    Coexistence of pressure-induced structural phases in bulk black phosphorus: a combined x-ray diffraction and Raman study up to 18 GPa

    Full text link
    We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black phosphorus attracted large attention because of the unique properties of fewlayers samples (phosphorene), but some basic questions are still open in the case of the bulk system. As concerning the presence of a Raman spectrum above 10 GPa, which should not be observed in an elemental simple cubic system, we propose a new explanation by attributing a key role to the non-hydrostatic conditions occurring in Raman experiments. Finally, a combined analysis of Raman and XRD data allowed us to obtain quantitative information on presence and extent of coexistences between different structural phases from ~5 up to ~15 GPa. This information can have an important role in theoretical studies on pressure-induced structural and electronic phase transitions in black phosphorus

    Vibrational spectrum of solid picene (C_22H_14)

    Full text link
    Recently, Mitsuhashi et al., have observed superconductivity with transition temperature up to 18 K in potassium doped picene (C22H14), a polycyclic aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis indicate the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab-initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unanbiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB

    Electrodynamics of superconducting pnictide superlattices

    Full text link
    It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure
    corecore