411 research outputs found
BICEP2 II: Experiment and Three-Year Data Set
We report on the design and performance of the BICEP2 instrument and on its
three-year data set. BICEP2 was designed to measure the polarization of the
cosmic microwave background (CMB) on angular scales of 1 to 5 degrees
(=40-200), near the expected peak of the B-mode polarization signature of
primordial gravitational waves from cosmic inflation. Measuring B-modes
requires dramatic improvements in sensitivity combined with exquisite control
of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm
aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new
detector design in which beam-defining slot antenna arrays couple to
transition-edge sensor (TES) bolometers, all fabricated on a common substrate.
The antenna-coupled TES detectors supported scalable fabrication and
multiplexed readout that allowed BICEP2 to achieve a high detector count of 500
bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree
angular scales. After optimization of detector and readout parameters, BICEP2
achieved an instrument noise-equivalent temperature of 15.8 K sqrt(s). The
full data set reached Stokes Q and U map depths of 87.2 nK in square-degree
pixels (5.2 K arcmin) over an effective area of 384 square degrees within
a 1000 square degree field. These are the deepest CMB polarization maps at
degree angular scales to date. The power spectrum analysis presented in a
companion paper has resulted in a significant detection of B-mode polarization
at degree scales.Comment: 30 pages, 24 figure
Antenna-coupled TES bolometers used in BICEP2, Keck array, and SPIDER
We have developed antenna-coupled transition-edge sensor (TES) bolometers for
a wide range of cosmic microwave background (CMB) polarimetry experiments,
including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors
have reached maturity and this paper reports on their design principles,
overall performance, and key challenges associated with design and production.
Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at
95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric
co-aligned beams with controlled side-lobe levels. Cross-polarized response on
boresight is typically ~0.5%, consistent with cross-talk in our multiplexed
readout system. End-to-end optical efficiencies in our cameras are routinely
35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the
scalability of this design, we have deployed 2560 detectors as 1280 matched
pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as
measured directly from CMB maps in the 2013 season. Similar arrays have
recently flown in the SPIDER instrument, and development of this technology is
ongoing.Comment: 16 pgs, 20 fig
BICEP2 / Keck Array VIII: Measurement of gravitational lensing from large-scale B-mode polarization
We present measurements of polarization lensing using the 150 GHz maps which
include all data taken by the BICEP2 & Keck Array CMB polarization experiments
up to and including the 2014 observing season (BK14). Despite their modest
angular resolution (), the excellent sensitivity (K-arcmin) of these maps makes it possible to directly reconstruct the
lensing potential using only information at larger angular scales (). From the auto-spectrum of the reconstructed potential we measure an
amplitude of the spectrum to be (Planck
CDM prediction corresponds to ), and reject
the no-lensing hypothesis at 5.8, which is the highest significance
achieved to date using an EB lensing estimator. Taking the cross-spectrum of
the reconstructed potential with the Planck 2015 lensing map yields
. These direct measurements of
are consistent with the CDM cosmology, and with
that derived from the previously reported BK14 B-mode auto-spectrum (). We perform a series of null tests and consistency
checks to show that these results are robust against systematics and are
insensitive to analysis choices. These results unambiguously demonstrate that
the B-modes previously reported by BICEP / Keck at intermediate angular scales
() are dominated by gravitational lensing. The
good agreement between the lensing amplitudes obtained from the lensing
reconstruction and B-mode spectrum starts to place constraints on any
alternative cosmological sources of B-modes at these angular scales.Comment: 12 pages, 8 figure
The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory
The Photodetector Array Camera and Spectrometer (PACS) is one of the three
science instruments on ESA's far infrared and submillimetre observatory. It
employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25
pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64
pixels, respectively, to perform integral-field spectroscopy and imaging
photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it
simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m,
over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in
each band. In spectroscopy mode, it images a field of 47"x47", resolved into
5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral
resolution of ~175km/s. We summarise the design of the instrument, describe
observing modes, calibration, and data analysis methods, and present our
current assessment of the in-orbit performance of the instrument based on the
Performance Verification tests. PACS is fully operational, and the achieved
performance is close to or better than the pre-launch predictions
The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric
array designed to study the polarization of the cosmic microwave background
radiation (CMB) and galactic foreground emission. Such measurements probe the
energy scale of the inflationary epoch, tighten constraints on cosmological
parameters, and verify our current understanding of CMB physics. Robinson
consists of a 250-mm aperture refractive telescope that provides an
instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37
arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of
polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He
sorption fridge system, and coupled to incoming radiation via corrugated feed
horns. The all-refractive optics is cooled to 4 K to minimize polarization
systematics and instrument loading. The fully steerable 3-axis mount is capable
of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s.
Robinson has begun its first season of observation at the South Pole. Given the
measured performance of the instrument along with the excellent observing
environment, Robinson will measure the E-mode polarization with high
sensitivity, and probe for the B-modes to unprecedented depths. In this paper
we discuss aspects of the instrument design and their scientific motivations,
scanning and operational strategies, and the results of initial testing and
observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter
Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275,
200
The TIME-Pilot Intensity Mapping Experiment
TIME-Pilot is designed to make measurements from the Epoch of Reionization (EoR), when the first stars and galaxies formed and ionized the intergalactic medium. This will be done via measurements of the redshifted 157.7 um line of singly ionized carbon ([CII]). In particular, TIME-Pilot will produce the first detection of [CII] clustering fluctuations, a signal proportional to the integrated [CII] intensity, summed over all EoR galaxies. TIME-Pilot is thus sensitive to the emission from dwarf galaxies, thought to be responsible for the balance of ionizing UV photons, that will be difficult to detect individually with JWST and ALMA. A detection of [CII] clustering fluctuations would validate current theoretical estimates of the [CII] line as a new cosmological observable, opening the door for a new generation of instruments with advanced technology spectroscopic array focal planes that will map [CII] fluctuations to probe the EoR history of star formation, bubble size, and ionization state. Additionally, TIME-Pilot will produce high signal-to-noise measurements of CO clustering fluctuations, which trace the role of molecular gas in star-forming galaxies at redshifts 0 < z < 2. With its unique atmospheric noise mitigation, TIME-Pilot also significantly improves sensitivity for measuring the kinetic Sunyaev-Zel’dovich (kSZ) effect in galaxy clusters. TIME-Pilot will employ a linear array of spectrometers, each consisting of a parallel-plate diffraction grating. The spectrometer bandwidth covers 185-323 GHz to both probe the entire redshift range of interest and to include channels at the edges of the band for atmospheric noise mitigation. We illuminate the telescope with f/3 horns, which balances the desire to both couple to the sky with the best efficiency per beam, and to pack a large number of horns into the fixed field of view. Feedhorns couple radiation to the waveguide spectrometer gratings. Each spectrometer grating has 190 facets and provides resolving power above 100. At this resolution, the longest dimension of the grating is 31 cm, which allows us to stack gratings in two blocks (one for each polarization) of 16 within a single cryostat, providing a 1x16 array of beams in a 14 arcminute field of view. Direct absorber TES sensors sit at the output of the grating on six linear facets over the output arc, allowing us to package and read out the detectors as arrays in a modular manner. The 1840 detectors will be read out with the NIST time-domain-multiplexing (TDM) scheme and cooled to a base temperature of 250 mK with a 3He sorption refrigerator. We present preliminary designs for the TIME-Pilot cryogenics, spectrometers, bolometers, and optics
BICEP2 / Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array
The Keck Array is a system of cosmic microwave background (CMB) polarimeters,
each similar to the BICEP2 experiment. In this paper we report results from the
2012 and 2013 observing seasons, during which the Keck Array consisted of five
receivers all operating in the same (150 GHz) frequency band and observing
field as BICEP2. We again find an excess of B-mode power over the
lensed-CDM expectation of in the range
and confirm that this is not due to systematics using jackknife tests and
simulations based on detailed calibration measurements. In map difference and
spectral difference tests these new data are shown to be consistent with
BICEP2. Finally, we combine the maps from the two experiments to produce final
Q and U maps which have a depth of 57 nK deg (3.4 K arcmin) over an
effective area of 400 deg for an equivalent survey weight of 250,000
K. The final BB band powers have noise uncertainty a factor of 2.3
times better than the previous results, and a significance of detection of
excess power of .Comment: 13 pages, 9 figure
- …
