1,194 research outputs found

    K Index in cerebrospinal fluid: a valid tool in multiple sclerosis diagnosis

    Get PDF
    Detection of oligoclonal IgG bands in cerebrospinal fluid by isoelectrocfocusing and immunodetection is the current gold standard to detect an inflammatory process in the central nervous system. It has been proposed that the presence of free light chains (FLCs) in CSF was associated with recent demyelination activity in MS and might be used as a prognosis marker. Our study’s objective is assessing the diagnostic accuracy of a new highly sensitive latex-enhanced nephelometric assay for k free light chain (kFLC) determination in CSF/serum as an alternative to traditional tests and its clinical application. Methods. kFLCs were measured in CSF/serum pairs from 80 patients by the use of a new highly sensitive latex-enhanced nephelometric automated immunoassay for detection of immunoglobulin FLC. The eighty patients were split into three groups according to the neurological diagnosis. In this study we confirm even more the use of the k Index as a diagnostic aid in multiple sclerosis. Results. kFLC Index seems to be more accurate parameter respect the determination of oligoclonal immunoglobulin bands (OCBs). We recalculate the K Index sensitivity and specificity respect the precedent published result. Two patients previously diagnosed with leukoencephalopathy have gone to group 3 as confirmed the diagnosis of MS. Conclusions. These new data reinforce even more the use of the k Index to diagnose MS in comparison to classical methods and to the reference method, the OCBs

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    Challenging Social Cognition Models of Adherence:Cycles of Discourse, Historical Bodies, and Interactional Order

    Get PDF
    Attempts to model individual beliefs as a means of predicting how people follow clinical advice have dominated adherence research, but with limited success. In this article, we challenge assumptions underlying this individualistic philosophy and propose an alternative formulation of context and its relationship with individual actions related to illness. Borrowing from Scollon and Scollon’s three elements of social action – “historical body,” “interaction order,” and “discourses in place” – we construct an alternative set of research methods and demonstrate their application with an example of a person talking about asthma management. We argue that talk- or illness-related behavior, both viewed as forms of social action, manifest themselves as an intersection of cycles of discourse, shifting as individuals move through these cycles across time and space. We finish by discussing how these dynamics of social action can be studied and how clinicians might use this understanding when negotiating treatment with patients

    Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

    Full text link
    The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m2^2. Silicon planes are interleaved with three layers of tungsten plates, resulting in about one radiation length of material in the tracker. Internal alignment parameters of the tracker have been determined on orbit, with non-showering protons and helium nuclei. We describe the alignment procedure and present the position resolution and alignment stability measurements

    Amending entanglement-breaking channels via intermediate unitary operations

    Get PDF
    We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters

    Employing culturally responsive pedagogy to foster literacy learning in schools

    Get PDF
     In recent years it has become increasingly obvious that, to enable students in schools from an increasingly diverse range of cultural backgrounds to acquire literacy to a standard that will support them to achieve academically, it is important to adopt pedagogy that is responsive to, and respectful of, them as culturally situated. What largely has been omitted from the literature, however, is discussion of a relevant model of learning to underpin this approach. For this reason this paper adopts a socio-cultural lens (Vygotsky, 1978) through which to view such pedagogy and refers to a number of seminal texts to justify of its relevance. Use of this lens is seen as having a particular rationale. It forces a focus on the agency of the teacher as a mediator of learning who needs to acknowledge the learner’s cultural situatedness (Kozulin, 2003) if school literacy learning for all students is to be as successful as it might be. It also focuses attention on the predominant value systems and social practices that characterize the school settings in which students’ literacy learning is acquired. The paper discusses implications for policy and practice at whole-school, classroom and individual student levels of culturally-responsive pedagogy that is based on a socio-cultural model of learning. In doing so it draws on illustrations from the work of a number of researchers, including that of the author

    Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

    Full text link
    High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to 2\sim 2 TeV in previous balloon- or space-borne experiments, and indirectly up to 5\sim 5 TeV by ground-based Cherenkov γ\gamma-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 GeV4.6 TeV25~{\rm GeV}-4.6~{\rm TeV} by the DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The majority of the spectrum can be properly fitted by a smoothly broken power-law model rather than a single power-law model. The direct detection of a spectral break at E0.9E \sim0.9 TeV confirms the evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at energies above 1 TeV and sheds light on the physical origin of the sub-TeV CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447

    Durata delle concessioni demaniali marittime e acquisizione al demanio delle opere non amovibili: indennizzi all'orizzonte?

    Get PDF
    Le concessioni demaniali marittime sono state un tema caldo nel panorama politico italiano sin dall’emanazione della direttiva 2006/123/CE (cd. direttiva Bolkestein). Il governo e il parlamento, infatti, non hanno mai provveduto a conformare l’ordinamento italiano all’art. 12 di detta direttiva prevedendo delle procedure di gara per l’assegnazione delle concessioni. Nonostante le spinte da parte della Commissione Europea, il vero punto di rottura è stato raggiunto con le sentenze dell’Adunanza Plenaria del Consiglio di Stato nn. 17 e 18 del 2021, mediante le quali si è cercato di porre la parola fine alla prassi ormai granitica delle proroghe generalizzate. Nonostante il chiaro monito del Consiglio di Stato, il legislatore italiano ha comunque provveduto a prorogare nuovamente le concessioni balneari senza prevedere nulla relativamente alla loro messa a gara. Il quadro si è poi ulteriormente complicato a causa dell’intervento della Corte di cassazione, la quale ha annullato la sentenza n. 18/2021 per un motivo meramente procedurale legato all’estromissione degli interventori dal giudizio, e dell’apertura di una nuova procedura di infrazione da parte della Commissione europea. Nel contesto confuso e stratificato che si prospetta, i diritti degli operatori economici che vogliano accedere al settore risultano evidentemente compromessi: solo un intervento legislativo chiaro e organico può realmente trovare una soluzione al contrasto con il diritto europeo e scongiurare così la prosecuzione della procedura di infrazione. Rimane quindi da chiedersi cosa ne sarà della disciplina delle concessioni balneari per gli anni a venire, sia in un’ottica di tutela della concorrenza, sia in relazione alla posizione giuridica di tutti i soggetti interessati

    Total synthesis of natural disaccharide sambubiose

    Get PDF
    A practical and robust synthetic method to obtain the natural disaccharide sambubiose (2O-β-D-xylopyranosyl-D-glucopyranose) is reported, exploring the key step in the synthesis, i.e., stereoselective O-glycosylation. Specifically, the best combinations of glycoside donors and acceptors were identified, stereospecific control of the reaction was achieved by screening several catalysts and protection/deprotection steps were evaluated and improved. The best result was obtained by coupling allyl 3,5,6-tri-O-benzyl-β-D-glucofuranoside with 2,3,4-tri-O-acetyl-Dxylopiranosyl-α-trichloro acetimidate in the presence of trimethylsilyl triflate as a catalyst giving the corresponding protected target compound as a correct single isomer. The latter was transformed accordingly into the desired final product by deprotection steps (deallylation, deacetylation, and debenzylation). Sambubiose was synthesized into a satisfactory and higher overall yield than previously reported and was also characterized

    Experimental study of the radiation emitted by 180-GeV/c electrons and positrons volume-reflected in a bent crystal

    Get PDF
    The radiation emitted by 180-GeV/c volume-reflected electrons and positrons impinging on a bent crystal has been measured by the H8RD22 Collaboration on the H8 beamline at the CERN SPS. A dedicated spectrometer has been developed to measure high-energy photon spectra (up to similar to 100 GeV) under volume reflection: photon and charged particle beams have been separated by a bending magnet and leptons were detected and tagged by microstrip silicon detectors and a Pb-scintillator sampling calorimeter. A comparison between the experimental and analytical data for the amorphous and volume-reflection cases is presented and the differences are discussed
    corecore