1,884 research outputs found
Field-induced thermal metal-to-insulator transition in underdoped LSCO
The transport of heat and charge in cuprates was measured in undoped and
heavily-underdoped single crystal La_{2-x}Sr_xCuO_{4+delta} (LSCO). In
underdoped LSCO, the thermal conductivity is found to decrease with increasing
magnetic field in the T --> 0 limit, in striking contrast to the increase
observed in all superconductors, including cuprates at higher doping. The
suppression of superconductivity with magnetic field shows that a novel thermal
metal-to-insulator transition occurs upon going from the superconducting state
to the field-induced normal state.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding
Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots
We investigate the influence of an external magnetic field on spin phase
relaxation of single electrons in semiconductor quantum dots induced by the
hyperfine interaction. The basic decay mechanism is attributed to the
dispersion of local effective nuclear fields over the ensemble of quantum dots.
The characteristics of electron spin dephasing is analyzed by taking an average
over the nuclear spin distribution. We find that the dephasing rate can be
estimated as a spin precession frequency caused primarily by the mean value of
the local nuclear magnetic field. Furthermore, it is shown that the hyperfine
interaction does not fully depolarize electron spin. The loss of initial spin
polarization during the dephasing process depends strongly on the external
magnetic field, leading to the possibility of effective suppression of this
mechanism.Comment: 10 pages, 2 figure
Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas
Recent measurements of a 2D electron gas subjected to microwave radiation
reveal a magnetoresistance with an oscillatory dependence on the ratio of
radiation frequency to cyclotron frequency. We perform a diagrammatic
calculation and find radiation-induced resistivity oscillations with the
correct period and phase. Results are explained via a simple picture of current
induced by photo-excited disorder-scattered electrons. The oscillations
increase with radiation intensity, easily exceeding the dark resistivity and
resulting in negative-resistivity minima. At high intensity, we identify
additional features, likely due to multi-photon processes, which have yet to be
observed experimentally.Comment: 5 pages, 3 figures; final version as published in Phys Rev Let
Violation of the Wiedemann-Franz Law in a Large-N Solution of the t-J Model
We show that the Wiedemann-Franz law, which holds for Landau Fermi liquids,
breaks down in a large-n treatment of the t-J model. The calculated ratio of
the in-plane thermal and electrical conductivities agrees quantitatively with
experiments on the normal state of the electron-doped Pr_{2-x}Ce_xCuO_4 (x =
0.15) cuprate superconductor. The violation of the Wiedemann-Franz law in the
uniform phase contrasts with other properties of the phase that are Fermi
liquid like.Comment: 4 pages, 2 figures. Typos corrected, one added reference, revised
discussion of experiment on 214 cuprate material (x = 0.06
Effects of an in-plane magnetic field on c-axis sum rule and superfluid density in high- cuprates
In layered cuprates, the application of an in-plane magnetic field changes the c-axis optical sum rule and superfluid density . For
pure incoherent c-axis coupling, has no effect on either quantities
but it does if an additional coherent component is present. For the coherent
contribution, different characteristic variations on and on
temperature result from the constant part of the hopping matrix
element and from the part which has zero on the diagonal of the
Brillouin zone. Only the constant part leads to a dependence on
the direction of as well as on its magnitude.Comment: 3 figure
Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States
We calculate the current-voltage characteristic of a two-dimensional electron
system (2DES) subjected to a magnetic field at strong electric fields. The
interaction of electrons with piezoelectric acoustic phonons is considered as a
major scattering mechanism governing the current-voltage characteristic. It is
shown that at a sufficiently strong electric field corresponding to the Hall
drift velocity exceeding the velocity of sound, the dissipative current
exhibits an overshoot. The overshoot of the dissipative current can result in a
breakdown of the absolute negative conductivity caused by microwave irradiation
and, therefore, substantially effect the formation of the domain structures
with the zero-resistance and zero-conductance states and supersonic electron
streams.Comment: 5 pages, 4 figure
Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons
We calculate the contribution of the photon-assisted interaction of electrons
with leaky interface phonons to the dissipative dc photoconductivity of a
two-dimensional electron system in a magnetic field. The calculated
photoconductivity as a function of the frequency of microwave radiation and the
magnetic field exhibits pronounced oscillations. The obtained oscillation
structure is different from that in the case of photon-assisted interaction
with impurities. We demonstrate that at a sufficiently strong microwave
radiation in the certain ranges of its frequency (or in certain ranges of the
magnetic field) this mechanism can result in the absolute negative
conductivity.Comment: 3 pages, 1 figur
Novel anisotropy in the superconducting gap structure of Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} probed by quasiparticle heat transport
Since the nature of pairing interactions is manifested in the superconducting
gap symmetry, the exact gap structure, particularly any deviation from the
simple d_{x^2-y^2} symmetry, would help elucidating the pairing mechanism in
high-T_c cuprates. Anisotropic heat transport measurement in
Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) reveals that the quasiparticle
populations are different for the two nodal directions and thus the gap
structure must be uniquely anisotropic, suggesting that pairing is governed by
interactions with a rather complicated anisotropy. Intriguingly, it is found
that the "plateau" in the magnetic-field dependence of the thermal conductivity
is observed only in the b-axis transport.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Low-temperature electronic heat transport in La_{2-x}Sr_{x}CuO_{4} single crystals: Unusual low-energy physics in the normal and superconducting states
The thermal conductivity \kappa is measured in a series of
La_{2-x}Sr_{x}CuO_{4} (x = 0 - 0.22) single crystals down to 90 mK to elucidate
the evolution of the residual electronic thermal conductivity \kappa_{res},
which probes the extended quasiparticle states in the d-wave gap. We found that
\kappa_{res}/T grows smoothly, except for a 1/8 anomaly, above x = 0.05 and
shows no discontinuity at optimum doping, indicating that the behavior of
\kappa_{res}/T is not governed by the metal-insulator crossover in the normal
state; as a result, \kappa_{res}/T is much larger than what the normal-state
resistivity would suggest in the underdoped region, which highlights the
peculiarities in the low-energy physics in the cuprates.Comment: 5 pages, 3 figures, final version published in PRL. Discussions have
been modified and an analysis of the phonon term has been adde
Phase fluctuations, dissipation and superfluid stiffness in d-wave superconductors
We study the effect of dissipation on quantum phase fluctuations in d-wave
superconductors. Dissipation, arising from a nonzero low frequency optical
conductivity which has been measured in experiments below , has two
effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction
of the temperature at which one crosses over to classical thermal fluctuations.
For parameter values relevant to the cuprates, we show that the crossover
temperature is still too large for classical phase fluctuations to play a
significant role at low temperature. Quasiparticles are thus crucial in
determining the linear temperature dependence of the in-plane superfluid
stiffness. Thermal phase fluctuations become important at higher temperatures
and play a role near .Comment: Presentation improved, new references added (10 latex pages, 3 eps
figures). submitted to PR
- …
