7,665 research outputs found
Diffusion Monte Carlo study of two-dimensional liquid He
The ground-state properties of two-dimensional liquid He at zero
temperature are studied by means of a quadratic diffusion Monte Carlo method.
As interatomic potential we use a revised version of the HFDHE2 Aziz potential
which is expected to give a better description of the interaction between
helium atoms. The equation of state is determined with great accuracy over a
wide range of densities in the liquid phase from the spinodal point up to the
freezing density. The spinodal decomposition density is estimated and other
properties of the liquid, such as radial distribution function, static form
factor, momentum distribution and density dependence of the condensate fraction
are all presented.Comment: 19 pages, RevTex 3.0, 7 figures available upon reques
Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data
Excitations in confined helium
We design models for helium in matrices like aerogel, Vycor or Geltech from a
manifestly microscopic point of view. For that purpose, we calculate the
dynamic structure function of 4He on Si substrates and between two Si walls as
a function of energy, momentum transfer, and the scattering angle. The
angle--averaged results are in good agreement with the neutron scattering data;
the remaining differences can be attributed to the simplified model used here
for the complex pore structure of the materials. A focus of the present work is
the detailed identification of coexisting layer modes and bulk--like
excitations, and, in the case of thick films, ripplon excitations. Involving
essentially two--dimensional motion of atoms, the layer modes are sensitive to
the scattering angle.Comment: Phys. Rev. B (2003, in press
Chandra Observations of Extended X-ray Emission in Arp 220
We resolve the extended X-ray emission from the prototypical ultraluminous
infrared galaxy Arp 220. Extended, faint edge-brightened, soft X-ray lobes
outside the optical galaxy are observed to a distance of 10 to 15 kpc on each
side of the nuclear region. Bright plumes inside the optical isophotes coincide
with the optical line emission and extend 11 kpc from end to end across the
nucleus. The data for the plumes cannot be fit by a single temperature plasma,
and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from
bright, diffuse circumnuclear emission in the inner 3 kpc centered on the
Halpha peak, which is displaced from the radio nuclei. There is a close
morphological correspondence between the Halpha and soft X-ray emission on all
spatial scales. We interpret the plumes as a starburst-driven superwind, and
discuss two interpretations of the emission from the lobes in the context of
simulations of the merger dynamics of Arp 220.Comment: Accepted for publication in ApJ; see also astro-ph/0208477 (Paper 1
The Double Quasar Q2138-431: Lensing by a Dark Galaxy?
We report the discovery of a new gravitational lens candidate Q2138-431AB,
comprising two quasar images at a redshift of 1.641 separated by 4.5 arcsecs.
The spectra of the two images are very similar, and the redshifts agree to
better than 115 km.sec. The two images have magnitudes and
, and in spite of a deep search and image subtraction procedure, no
lensing galaxy has been found with . Modelling of the system
configuration implies that the mass-to-light ratio of any lensing galaxy is
likely to be around , with an absolute lower limit of
for an Einstein-de Sitter universe. We conclude that
the most likely explanation of the observations is gravitational lensing by a
dark galaxy, although it is possible we are seeing a binary quasar.Comment: 17 pages (Latex), 8 postscript figures included, accepted by MNRA
Making time for what's important:what elements should we value when planning practice-based professional training?
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
Localized helium excitations in 4He_N-benzene clusters
We compute ground and excited state properties of small helium clusters 4He_N
containing a single benzene impurity molecule. Ground-state structures and
energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body
diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational
motion near the molecule surface are evaluated using the projection operator,
imaginary time spectral evolution (POITSE) method. We find excitation energies
of up to ~23 K above the ground state. These states all possess vibrational
character of helium atoms in a highly anisotropic potential due to the aromatic
molecule, and can be categorized in terms of localized and collective
vibrational modes. These results appear to provide precursors for a transition
from localized to collective helium excitations at molecular nanosubstrates of
increasing size. We discuss the implications of these results for analysis of
anomalous spectral features in recent spectroscopic studies of large aromatic
molecules in helium clusters.Comment: 15 pages, 5 figures, submitted to Phys. Rev.
Quantum sticking, scattering and transmission of 4He atoms from superfluid 4He surfaces
We develop a microscopic theory of the scattering, transmission, and sticking
of 4He atoms impinging on a superfluid 4He slab at near normal incidence, and
inelastic neutron scattering from the slab. The theory includes coupling
between different modes and allows for inelastic processes. We find a number of
essential aspects that must be observed in a physically meaningful and reliable
theory of atom transmission and scattering; all are connected with
multiparticle scattering, particularly the possibility of energy loss. These
processes are (a) the coupling to low-lying (surface) excitations
(ripplons/third sound) which is manifested in a finite imaginary part of the
self energy, and (b) the reduction of the strength of the excitation in the
maxon/roton region
- …
