762 research outputs found
When daily planning improves employee performance: the importance of planning type, engagement, and interruptions
Does planning for a particular workday help employees perform better than on other days they fail to plan? We investigate this question by identifying two distinct types of daily work planning to explain why and when planning improves employees’ daily performance.
The first type is time management planning (TMP)—creating task lists, prioritizing tasks, and determining how and when to perform them. We propose that TMP enhances employees’ performance by increasing their work engagement, but that these positive effects are weakened when employees face many interruptions in their day.
The second type is contingent planning (CP) in which employees anticipate possible interruptions in their work and plan for them. We propose that CP helps employees stay engaged and perform well despite frequent interruptions. We investigate these hypotheses using a two-week experience-sampling study. Our findings indicate that TMP’s positive effects are conditioned upon the amount of interruptions, but CP has positive effects that are not influenced by the level of interruptions.
Through this study, we help inform workers of the different planning methods they can use to increase their daily motivation and performance in dynamic work environments
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Vacuum Induced Coherences in Radiatively Coupled Multilevel Systems
We show that radiative coupling between two multilevel atoms having
near-degenerate states can produce new interference effects in spontaneous
emission. We explicitly demonstrate this possibility by considering two
identical V systems each having a pair of transition dipole matrix elements
which are orthogonal to each other. We discuss in detail the origin of the new
interference terms and their consequences. Such terms lead to the evolution of
certain coherences and excitations which would not occur otherwise. The special
choice of the orientation of the transition dipole matrix elements enables us
to illustrate the significance of vacuum induced coherence in multi-atom
multilevel systems. These coherences can be significant in energy transfer
studies.Comment: 13 pages including 8 figures in Revtex; submitted to PR
Preparation of decoherence-free, subradiant states in a cavity
The cause of decoherence in a quantum system can be traced back to the
interaction with the environment. As it has been pointed out first by Dicke, in
a system of N two-level atoms where each of the atoms is individually dipole
coupled to the environment, there are collective, subradiant states, that have
no dipole coupling to photon modes, and therefore they are expected to decay
slower. This property also implies that these type of states, which form an N-1
dimensional subspace of the atomic subsytem, also decohere slower. We propose a
scheme which will create such states. First the two-level atoms are placed in a
strongly detuned cavity and one of the atoms, called the control atom is
excited. The time evolution of the coupled atom-cavity system leads to an
appropriately entangled state of the atoms. By applying subsequent laser pulses
at a well defined time instant, it is possible to drive the atomic state into
the subradiant, i. e., decoherence free subspace. Up to a certain average
number of the photons, the result is independent of the state of the cavity.
The analysis of the conditions shows that this scheme is feasible with present
day techniques achieved in atom cavity interaction experiments.Comment: 5 page
Two-atom dark states in electromagnetic cavities
The center-of-mass motion of two two-level atoms coupled to a single damped
mode of an electromagnetic resonator is investigated. For the case of one atom
being initially excited and the cavity mode in the vacuum state it is shown
that the atomic time evolution is dominated by the appearance of dark states.
These states, in which the initial excitation is stored in the internal atomic
degrees of freedom and the atoms become quantum mechanically entangled, are
almost immune against photon loss from the cavity. Various properties of the
dark states within and beyond the Raman-Nath approximation of atom optics are
worked out.Comment: 8 pages, 4 figure
Localized states in strong magnetic field: resonant scattering and the Dicke effect
We study the energy spectrum of a system of localized states coupled to a 2D
electron gas in strong magnetic field. If the energy levels of localized states
are close to the electron energy in the plane, the system exhibits a kind of
collective behavior analogous to the Dicke effect in optics. The latter
manifests itself in ``trapping'' of electronic states by localized states. At
the same time, the electronic density of states develops a gap near the
resonance. The gap and the trapping of states appear to be complementary and
reflect an intimate relation between the resonant scattering and the Dicke
effect. We reveal this relation by presenting the exact solution of the problem
for the lowest Landau level. In particular, we show that in the absence of
disorder the system undergoes a phase transition at some critical concentration
of localized states.Comment: 28 pages + 9 fig
Preserving coherence in quantum computation by pairing quantum bits
A scheme is proposed for protecting quantum states from both independent
decoherence and cooperative decoherence. The scheme operates by pairing each
qubit (two-state quantum system) with an ancilla qubit and by encoding the
states of the qubits into the corresponding coherence-preserving states of the
qubit-pairs. In this scheme, the amplitude damping (loss of energy) is
prevented as well as the phase damping (dephasing) by a strategy called the
free-Hamiltonian-elimination We further extend the scheme to include quantum
gate operations and show that loss and decoherence during the gate operations
can also be prevented.Comment: 12 pages, Latex, some correction in the reference and introduction.
Jour-ref: Phys. Rev. Lett. 79, 1953, 199
Observation of single collisionally cooled trapped ions in a buffer gas
Individual Ba ions are trapped in a gas-filled linear ion trap and observed
with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage
times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at
pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are
experimentally studied in the simple case of single ions. In particular, the
cooling effects of light gases such as He and Ar and the destabilizing
properties of heavier gases such as Xe are studied. A simple model is offered
to explain the observed phenomenology.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A. Minor
text and figure change
Laser Cooling of two trapped ions: Sideband cooling beyond the Lamb-Dicke limit
We study laser cooling of two ions that are trapped in a harmonic potential
and interact by Coulomb repulsion. Sideband cooling in the Lamb-Dicke regime is
shown to work analogously to sideband cooling of a single ion. Outside the
Lamb-Dicke regime, the incommensurable frequencies of the two vibrational modes
result in a quasi-continuous energy spectrum that significantly alters the
cooling dynamics. The cooling time decreases nonlinearly with the linewidth of
the cooling transition, and the effect of trapping states which may slow down
the cooling is considerably reduced. We show that cooling to the ground state
is possible also outside the Lamb-Dicke regime. We develop the model and use
Quantum Monte Carlo calculations for specific examples. We show that a rate
equation treatment is a good approximation in all cases.Comment: 13 pages, 10 figure
Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register
We report preparation in the ground state of collective modes of motion of
two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic
gates which can entangle the ions' internal electronic states. We find that
heating of the modes of relative ion motion is substantially suppressed
relative to that of the center-of-mass modes, suggesting the importance of
these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at
http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published)
version. Eq. 1 and Table 1 slightly different from original submissio
- …
