8,043 research outputs found

    Fidelity enhancement by logical qubit encoding

    Full text link
    We demonstrate coherent control of two logical qubits encoded in a decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR quantum information processor. A pseudo-pure fiducial state is created in the DFS, and a unitary logical qubit entangling operator evolves the system to a logical Bell state. The four-spin molecule is partially aligned by a liquid crystal solvent, which introduces strong dipolar couplings among the spins. Although the system Hamiltonian is never fully specified, we demonstrate high fidelity control over the logical degrees of freedom. In fact, the DFS encoding leads to higher fidelity control than is available in the full four-spin Hilbert space.Comment: 10 pages, 2 figure

    Development of Early Adiposity in Infants of Mothers With Gestational Diabetes Mellitus

    Get PDF
    OBJECTIVE Infants born to mothers with gestational diabetes mellitus (GDM) are at greater risk of later adverse metabolic health. We examined plausible candidate mediators, adipose tissue (AT) quantity and distribution and intrahepatocellular lipid (IHCL) content, comparing infants of mothers with GDM and without GDM (control group) over the first 3 postnatal months. RESEARCH DESIGN AND METHODS We conducted a prospective longitudinal study using MRI and spectroscopy to quantify whole-body and regional AT volumes, and IHCL content, within 2 weeks and 8–12 weeks after birth. We adjusted for infant size and sex and maternal prepregnancy BMI. Values are reported as the mean difference (95% CI). RESULTS We recruited 86 infants (GDM group 42 infants; control group 44 infants). Mothers with GDM had good pregnancy glycemic control. Infants were predominantly breast-fed up to the time of the second assessment (GDM group 71%; control group 74%). Total AT volumes were similar in the GDM group compared with the control group at a median age of 11 days (−28 cm3 [95% CI −121, 65], P = 0.55), but were greater in the GDM group at a median age of 10 weeks (247 cm3 [56, 439], P = 0.01). After adjustment for size, the GDM group had significantly greater total AT volume at 10 weeks than control group infants (16.0% [6.0, 27.1], P = 0.002). AT distribution and IHCL content were not significantly different at either time point. CONCLUSIONS Adiposity in GDM infants is amplified in early infancy, despite good maternal glycemic control and predominant breast-feeding, suggesting a potential causal pathway to later adverse metabolic health. Reduction in postnatal adiposity may be a therapeutic target to reduce later health risks. </jats:sec

    Quantum information processing using strongly-dipolar coupled nuclear spins

    Get PDF
    Dipolar coupled homonuclear spins present challenging, yet useful systems for quantum information processing. In such systems, eigenbasis of the system Hamiltonian is the appropriate computational basis and coherent control can be achieved by specially designed strongly modulating pulses. In this letter we describe the first experimental implementation of the quantum algorithm for numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR

    First principles investigations of the electronic, magnetic and chemical bonding properties of CeTSn (T=Rh,Ru)

    Full text link
    The electronic structures of CeRhSn and CeRuSn are self-consistently calculated within density functional theory using the local spin density approximation for exchange and correlation. In agreement with experimental findings, the analyses of the electronic structures and of the chemical bonding properties point to the absence of magnetization within the mixed valent Rh based system while a finite magnetic moment is observed for trivalent cerium within the Ru-based stannide, which contains both trivalent and intermediate valent Ce.Comment: 6 pages, 7 figures, for more information see http://www.physik.uni-augsburg.de/~eyert

    Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Get PDF
    Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA

    Spontaneous formation and stability of small GaP fullerenes

    Get PDF
    We report the spontaneous formation of a GaP fullerene cage in ab-initio Molecular Dynamics simulations starting from a bulk fragment. A systematic study of the geometric and electronic properties of neutral and ionized GaP clusters suggests the stability of hetero-fullerenes formed by a compound with zincblend bulk structure. We find that GaP fullerenes up to 28 atoms have high symmetry, closed electronic shells, large HOMO-LUMO energy gaps and do not dissociate when ionized. We compare our results for GaP with those obtained by other groups for the corresponding BN clusters.Comment: To appear on PRL, 4 pages, 1 figure, Late

    Molecular basis for passive immunotherapy of Alzheimer's disease

    Get PDF
    Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity

    Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase

    Get PDF
    Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration

    Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity.

    Get PDF
    The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades
    corecore