8,043 research outputs found
Fidelity enhancement by logical qubit encoding
We demonstrate coherent control of two logical qubits encoded in a
decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR
quantum information processor. A pseudo-pure fiducial state is created in the
DFS, and a unitary logical qubit entangling operator evolves the system to a
logical Bell state. The four-spin molecule is partially aligned by a liquid
crystal solvent, which introduces strong dipolar couplings among the spins.
Although the system Hamiltonian is never fully specified, we demonstrate high
fidelity control over the logical degrees of freedom. In fact, the DFS encoding
leads to higher fidelity control than is available in the full four-spin
Hilbert space.Comment: 10 pages, 2 figure
Development of Early Adiposity in Infants of Mothers With Gestational Diabetes Mellitus
OBJECTIVE
Infants born to mothers with gestational diabetes mellitus (GDM) are at greater risk of later adverse metabolic health. We examined plausible candidate mediators, adipose tissue (AT) quantity and distribution and intrahepatocellular lipid (IHCL) content, comparing infants of mothers with GDM and without GDM (control group) over the first 3 postnatal months.
RESEARCH DESIGN AND METHODS
We conducted a prospective longitudinal study using MRI and spectroscopy to quantify whole-body and regional AT volumes, and IHCL content, within 2 weeks and 8–12 weeks after birth. We adjusted for infant size and sex and maternal prepregnancy BMI. Values are reported as the mean difference (95% CI).
RESULTS
We recruited 86 infants (GDM group 42 infants; control group 44 infants). Mothers with GDM had good pregnancy glycemic control. Infants were predominantly breast-fed up to the time of the second assessment (GDM group 71%; control group 74%). Total AT volumes were similar in the GDM group compared with the control group at a median age of 11 days (−28 cm3 [95% CI −121, 65], P = 0.55), but were greater in the GDM group at a median age of 10 weeks (247 cm3 [56, 439], P = 0.01). After adjustment for size, the GDM group had significantly greater total AT volume at 10 weeks than control group infants (16.0% [6.0, 27.1], P = 0.002). AT distribution and IHCL content were not significantly different at either time point.
CONCLUSIONS
Adiposity in GDM infants is amplified in early infancy, despite good maternal glycemic control and predominant breast-feeding, suggesting a potential causal pathway to later adverse metabolic health. Reduction in postnatal adiposity may be a therapeutic target to reduce later health risks.
</jats:sec
Quantum information processing using strongly-dipolar coupled nuclear spins
Dipolar coupled homonuclear spins present challenging, yet useful systems for
quantum information processing. In such systems, eigenbasis of the system
Hamiltonian is the appropriate computational basis and coherent control can be
achieved by specially designed strongly modulating pulses. In this letter we
describe the first experimental implementation of the quantum algorithm for
numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR
First principles investigations of the electronic, magnetic and chemical bonding properties of CeTSn (T=Rh,Ru)
The electronic structures of CeRhSn and CeRuSn are self-consistently
calculated within density functional theory using the local spin density
approximation for exchange and correlation. In agreement with experimental
findings, the analyses of the electronic structures and of the chemical bonding
properties point to the absence of magnetization within the mixed valent Rh
based system while a finite magnetic moment is observed for trivalent cerium
within the Ru-based stannide, which contains both trivalent and intermediate
valent Ce.Comment: 6 pages, 7 figures, for more information see
http://www.physik.uni-augsburg.de/~eyert
Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis
Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA
Spontaneous formation and stability of small GaP fullerenes
We report the spontaneous formation of a GaP fullerene cage in ab-initio
Molecular Dynamics simulations starting from a bulk fragment. A systematic
study of the geometric and electronic properties of neutral and ionized GaP
clusters suggests the stability of hetero-fullerenes formed by a compound with
zincblend bulk structure. We find that GaP fullerenes up to 28 atoms have high
symmetry, closed electronic shells, large HOMO-LUMO energy gaps and do not
dissociate when ionized. We compare our results for GaP with those obtained by
other groups for the corresponding BN clusters.Comment: To appear on PRL, 4 pages, 1 figure, Late
Recommended from our members
Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial.
BACKGROUND: Extracranial carotid and vertebral artery dissection is an important cause of stroke, especially in young people. In some observational studies it has been associated with a high risk of recurrent stroke. Both antiplatelet drugs and anticoagulant drugs are used to reduce risk of stroke but whether one treatment strategy is more effective than the other is unknown. We compared their efficacy in the Cervical Artery Dissection in Stroke Study (CADISS), with the additional aim of establishing the true risk of recurrent stroke. METHODS: We did this randomised trial at hospitals with specialised stroke or neurology services (39 in the UK and seven in Australia). We included patients with extracranial carotid and vertebral dissection with onset of symptoms within the past 7 days. Patients were randomly assigned (1:1) by an automated telephone randomisation service to receive antiplatelet drugs or anticoagulant drugs (specific treatment decided by the local clinician) for 3 months. Patients and clinicians were not masked to allocation, but investigators assessing endpoints were. The primary endpoint was ipsilateral stroke or death in the intention-to-treat population. The trial was registered with EUDract (2006-002827-18) and ISRN (CTN44555237). FINDINGS: We enrolled 250 participants (118 carotid, 132 vertebral). Mean time to randomisation was 3·65 days (SD 1·91). The major presenting symptoms were stroke or transient ischaemic attack (n=224) and local symptoms (headache, neck pain, or Horner's syndrome; n=26). 126 participants were assigned to antiplatelet treatment versus 124 to anticoagulant treatment. Overall, four (2%) of 250 patients had stroke recurrence (all ipsilateral). Stroke or death occurred in three (2%) of 126 patients versus one (1%) of 124 (odds ratio [OR] 0·335, 95% CI 0·006-4·233; p=0·63). There were no deaths, but one major bleeding (subarachnoid haemorrhage) in the anticoagulant group. Central review of imaging failed to confirm dissection in 52 patients. Preplanned per-protocol analysis excluding these patients showed stroke or death in three (3%) of 101 patients in the antiplatelet group versus one (1%) of 96 patients in the anticoagulant group (OR 0·346, 95% CI 0·006-4·390; p=0·66). INTERPRETATION: We found no difference in efficacy of antiplatelet and anticoagulant drugs at preventing stroke and death in patients with symptomatic carotid and vertebral artery dissection but stroke was rare in both groups, and much rarer than reported in some observational studies. Diagnosis of dissection was not confirmed after review in many cases, suggesting that radiographic criteria are not always correctly applied in routine clinical practice. FUNDING: Stroke Association.Hugh S Markus is supported by an NIHR Senior Investigator
award and his work is supported by the Cambridge University Hospital
Comprehensive Biomedical Research Centre. Adina Feldman was
supported by a project grant from the British Heart Foundation (PG/13/30/30005).This is the final published version. It first appeared at http://www.thelancet.com/journals/laneur/article/PIIS1474-4422%2815%2970018-9/abstract
Molecular basis for passive immunotherapy of Alzheimer's disease
Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity
Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase
Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration
Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity.
The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades
- …
