435 research outputs found

    Classical Stability of the Galileon

    Full text link
    We consider the classical equations of motion for a single Galileon field with generic parameters in the presence of non-relativistic sources. We introduce the concept of absolute stability of a theory: if one can show that a field at a single point---like infinity for instance---in spacetime is stable, then stability of the field over the rest of spacetime is guaranteed for any positive energy source configuration. The Dvali-Gabadadze-Porrati (DGP) model is stable in this manner, and previous studies of spherically symmetric solutions suggest that certain classes of the single field Galileon (of which the DGP model is a subclass) may have this property as well. We find, however, that when general solutions are considered this is not the case. In fact, when considering generic solutions there are no choices of free parameters in the Galileon theory that will lead to absolute stability except the DGP choice. Our analysis indicates that the DGP model is an exceptional choice among the large class of possible single field Galileon theories. This implies that if general solutions (non-spherically symmetric) exist they may be unstable. Given astrophysical motivation for the Galileon, further investigation into these unstable solutions may prove fruitful.Comment: 23 pages, 3 figure

    The quantum mechanics of perfect fluids

    Full text link
    We consider the canonical quantization of an ordinary fluid. The resulting long-distance effective field theory is derivatively coupled, and therefore strongly coupled in the UV. The system however exhibits a number of peculiarities, associated with the vortex degrees of freedom. On the one hand, these have formally a vanishing strong-coupling energy scale, thus suggesting that the effective theory's regime of validity is vanishingly narrow. On the other hand, we prove an analog of Coleman's theorem, whereby the semiclassical vacuum has no quantum counterpart, thus suggesting that the vortex premature strong-coupling phenomenon stems from a bad identification of the ground state and of the perturbative degrees of freedom. Finally, vortices break the usual connection between short distances and high energies, thus potentially impairing the unitarity of the effective theory.Comment: 35 page

    On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    Full text link
    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGWN_{\rm GW} needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for NGWN_{\rm GW} to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically NGWN_{\rm GW} \lesssim 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Supersymmetric sound in fluids

    Full text link
    We consider the hydrodynamics of supersymmetric fluids. Supersymmetry is broken spontaneously and the low energy spectrum includes a fermionic massless mode, the phonino\mathit{phonino}. We use two complementary approaches to describe the system: First, we construct a generating functional from which we derive the equations of motion of the fluid and of the phonino propagating through the fluid. We write the form of the leading corrections in the derivative expansion, and show that the so called diffusion terms in the supercurrent are in fact not dissipative. Second, we use an effective field theory approach which utilizes a non-linear realization of supersymmetry to analyze the interactions between phoninos and phonons, and demonstrate the conservation of entropy in ideal fluids. We comment on possible phenomenological consequences for gravitino physics in the early universe.Comment: Modified introduction and discussion of diffusion terms in the supercurren

    Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity

    Full text link
    We study the consequences of imposing an approximate Galilean symmetry on the Effective Theory of Inflation, the theory of small perturbations around the inflationary background. This approach allows us to study the effect of operators with two derivatives on each field, which can be the leading interactions due to non-renormalization properties of the Galilean Lagrangian. In this case cubic non-Gaussianities are given by three independent operators, containing up to six derivatives, two with a shape close to equilateral and one peaking on flattened isosceles triangles. The four-point function is larger than in models with small speed of sound and potentially observable with the Planck satellite.Comment: 23 pages, 6 figures. v2: minor changes to match JCAP published versio

    The Worldvolume Action of Kink Solitons in AdS Spacetime

    Full text link
    A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS spacetime is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in two expansion parameters--associated with the hypersurface fluctuation length and the radius of AdS spacetime respectively. Two alternative methods are given for doing this. The results are expressed in terms of the trace of the extrinsic curvature and the intrinsic scalar curvature. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde

    Boundary Terms and Junction Conditions for Generalized Scalar-Tensor Theories

    Full text link
    We compute the boundary terms and junction conditions for Horndeski's panoptic class of scalar-tensor theories, and write the bulk and boundary equations of motion in explicitly second order form. We consider a number of special subclasses, including galileon theories, and present the corresponding formulae. Our analysis opens up of the possibility of studying tunnelling between vacua in generalized scalar-tensor theories, and braneworld dynamics. The latter follows because our results are independent of spacetime dimension.Comment: 13 pages, Equation corrected. Thanks to Tsutomu Kobayashi for informing us of the typ

    The Imperfect Fluid behind Kinetic Gravity Braiding

    Get PDF
    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formulating the non-trivial conditions for the thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on diffusion and dynamics in alternative frames, as well as additional references. v3 reflects version accepted for publication in JHEP: minor comments added regarding suitability to numerical approache

    Generalizing Galileons

    Full text link
    The Galileons are a set of terms within four-dimensional effective field theories, obeying symmetries that can be derived from the dynamics of a 3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These theories have some intriguing properties, including freedom from ghosts and a non-renormalization theorem that hints at possible applications in both particle physics and cosmology. In this brief review article, we will summarize our attempts over the last year to extend the Galileon idea in two important ways. We will discuss the effective field theory construction arising from co-dimension greater than one flat branes embedded in a flat background - the multiGalileons - and we will then describe symmetric covariant versions of the Galileons, more suitable for general cosmological applications. While all these Galileons can be thought of as interesting four-dimensional field theories in their own rights, the work described here may also make it easier to embed them into string theory, with its multiple extra dimensions and more general gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of Classical and Quantum Gravity. Submitted to CQ
    corecore