3,150 research outputs found
Evolution of transport properties of BaFe2-xRuxAs2 in a wide range of isovalent Ru substitution
The effects of isovalent Ru substitution at the Fe sites of BaFe2-xRuxAs2 are
investigated by measuring resistivity and Hall coefficient on high-quality
single crystals in a wide range of doping (0 < x < 1.4). Ru substitution
weakens the antiferromagnetic (AFM) order, inducing superconductivity for
relatively high doping level of 0.4 < x < 0.9. Near the AFM phase boundary, the
transport properties show non-Fermi-liquid-like behaviors with a
linear-temperature dependence of resistivity and a strong temperature
dependence of Hall coefficient with a sign change. Upon higher doping, however,
both of them recover conventional Fermi-liquid behaviors. Strong doping
dependence of Hall coefficient together with a small magnetoresistance suggest
that the anomalous transport properties can be explained in terms of
anisotropic charge carrier scattering due to interband AFM fluctuations rather
than a conventional multi-band scenario.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
Rank properties of exposed positive maps
Let \cK and \cH be finite dimensional Hilbert spaces and let \fP denote
the cone of all positive linear maps acting from \fB(\cK) into \fB(\cH). We
show that each map of the form or is an
exposed point of \fP. We also show that if a map is an exposed point
of \fP then either is rank 1 non-increasing or \rank\phi(P)>1 for
any one-dimensional projection P\in\fB(\cK).Comment: 6 pages, last section removed - it will be a part of another pape
Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers
Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have
been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with
atomic layer control. We observe a shift in the magnetic hysteresis loop of the
LSMO layer in the same direction as the applied biasing field (positive
exchange bias). The effect is not present above the Curie temperature of the
SRO layer (), and its magnitude increases rapidly as the temperature is lowered
below . The direction of the shift is consistent with an antiferromagnetic
exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic
SRO layer. We propose that atomic layer charge transfer modifies the electronic
state at the interface, resulting in the observed antiferromagnetic interfacial
exchange coupling.Comment: accepted to Applied Physics Letter
Are better conducting molecules more rigid?
We investigate the electronic origin of the bending stiffness of conducting
molecules. It is found that the bending stiffness associated with electronic
motion, which we refer to as electro-stiffness, , is governed by
the molecular orbital overlap and the gap width between HOMO and LUMO
levels, and behaves as . To study the
effect of doping, we analyze the electron filling-fraction dependence on
and show that doped molecules are more flexible. In addition, to
estimate the contribution of to the total stiffness, we consider
molecules under a voltage bias, and study the length contraction ratio as a
function of the voltage. The molecules are shown to be contracted or dilated,
with increasing nonlinearly with the applied bias
The role of binding site on the mechanical unfolding mechanism of ubiquitin.
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution
Magnetotransport and the upper critical magnetic field in MgB2
Magnetotransport measurements are presented on polycrystalline MgB2 samples.
The resistive upper critical magnetic field reveals a temperature dependence
with a positive curvature from Tc = 39.3 K down to about 20 K, then changes to
a slightly negative curvature reaching 25 T at 1.5 K. The 25- Tesla upper
critical field is much higher than what is known so far on polycrystals of MgB2
but it is in agreement with recent data obtained on epitaxial MgB2 films. The
deviation of Bc2(T) from standard BCS might be due to the proposed two-gap
superconductivity in this compound. The observed quadratic normal-state
magnetoresistance with validity of Kohler's rule can be ascribed to classical
trajectory effects in the low-field limit.Comment: 6 pages, incl. 3 figure
Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFeCoAs
We report a study of high quality pnictide superconductor
BaFeCoAs thin films using time-domain THz spectroscopy.
Near T we find evidence for a coherence peak and qualitative agreement with
the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature,
we find that the real part of the THz conductivity is not fully suppressed and
is significantly smaller than the Matthis-Bardeen expectation. The
temperature dependence of the penetration depth follows a power law
with an unusually high exponent of 3.1. We interpret these results as
consistent with impurity scattering induced pair-breaking. Taken together our
results are strong evidence for an extended s symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no
change to tex
- …
