7,764 research outputs found
In field N transfer, build-up, and leaching in ryegrass-clover mixtures
Two field experiments investigating dynamics in grass-clover mixtures were conducted, using 15N- and 14C-labelling to trace carbon (C) and nitrogen (N) from grass (Lolium perenne L.) and clover (Trifolium repens L. and Trifolium pratense L.). The leaching of dissolved inorganic nitrogen (DIN), as measured in pore water sampled by suction cups, increased during the autumn and winter, whereas the leaching of dissolved organic nitrogen (DON) was fairly constant during this period. Leaching of 15N from the sward indicated that ryegrass was the direct source of less than 1-2 percent of the total N leaching measured, whereas N dynamics pointed to clover as an important contributor to N leaching. Sampling of roots indicates that the dynamics in smaller roots were responsible for N and C build-up in the sward, and that N became available for transfer among species and leaching from the root zone. The bi-directional transfer of N between ryegrass and clover could however not be explained only by root turnover. Other processes like direct uptake of organic N compounds, may have contributed
MEDUSA - New Model of Internet Topology Using k-shell Decomposition
The k-shell decomposition of a random graph provides a different and more
insightful separation of the roles of the different nodes in such a graph than
does the usual analysis in terms of node degrees. We develop this approach in
order to analyze the Internet's structure at a coarse level, that of the
"Autonomous Systems" or ASes, the subnetworks out of which the Internet is
assembled. We employ new data from DIMES (see http://www.netdimes.org), a
distributed agent-based mapping effort which at present has attracted over 3800
volunteers running more than 7300 DIMES clients in over 85 countries. We
combine this data with the AS graph information available from the RouteViews
project at Univ. Oregon, and have obtained an Internet map with far more detail
than any previous effort.
The data suggests a new picture of the AS-graph structure, which
distinguishes a relatively large, redundantly connected core of nearly 100 ASes
and two components that flow data in and out from this core. One component is
fractally interconnected through peer links; the second makes direct
connections to the core only. The model which results has superficial
similarities with and important differences from the "Jellyfish" structure
proposed by Tauro et al., so we call it a "Medusa." We plan to use this picture
as a framework for measuring and extrapolating changes in the Internet's
physical structure. Our k-shell analysis may also be relevant for estimating
the function of nodes in the "scale-free" graphs extracted from other
naturally-occurring processes.Comment: 24 pages, 17 figure
Bayesian noise estimation for non-ideal CMB experiments
We describe a Bayesian framework for estimating the time-domain noise
covariance of CMB observations, typically parametrized in terms of a 1/f
frequency profile. This framework is based on the Gibbs sampling algorithm,
which allows for exact marginalization over nuisance parameters through
conditional probability distributions. In this paper we implement support for
gaps in the data streams and marginalization over fixed time-domain templates,
and also outline how to marginalize over confusion from CMB fluctuations, which
may be important for high signal-to-noise experiments. As a by-product of the
method, we obtain proper constrained realizations, which themselves can be
useful for map making. To validate the algorithm, we demonstrate that the
reconstructed noise parameters and corresponding uncertainties are unbiased
using simulated data. The CPU time required to process a single data stream of
100 000 samples with 1000 samples removed by gaps is 3 seconds if only the
maximum posterior parameters are required, and 21 seconds if one also want to
obtain the corresponding uncertainties by Gibbs sampling.Comment: 8 pages, 4 figures, submitted to ApJ
Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA
The intertidal marine red alga Porphyra umbilicalis reproduces asexually in the Northwest Atlantic. We looked for population substructure among typical open-coastal and atypical estuarine habitats in seven asexual populations of P. umbilicalis from Maine to New Hampshire using eight expressed sequence tag-simple sequence repeats (EST-SSR) or microsatellite loci. Six genotypes were identified, four of which may represent recombinant genotypes from a recombination event that took place locally, or that took place prior to introduction to the Northwest Atlantic. Genotypic diversity was lowest in a population from Wiscasset, Maine, which inhabits an atypical habitat high in the intertidal zone of a bridge piling in an estuarine tidal rapid. Genotypic diversity was highest in the southernmost populations from New Hampshire; we identified two genotypes that were unique to the southernmost populations, and probably represent the most derived genotypes. We looked at genetic distances among populations in similar habitats, and found that populations were more closely related to their closest neighboring population than to a population in a similar habitat. We show that genotypic diversity within P. umbilicalis populations in the Gulf of Maine is relatively high and thus fits a model of high steady-state variation within asexual populations
Spatial variations in the spectral index of polarized synchrotron emission in the 9 yr WMAP sky maps
We estimate the spectral index, beta, of polarized synchrotron emission as
observed in the 9 yr WMAP sky maps using two methods, linear regression ("T-T
plot") and maximum likelihood. We partition the sky into 24 disjoint sky
regions, and evaluate the spectral index for all polarization angles between 0
deg and 85 deg in steps of 5. Averaging over polarization angles, we derive a
mean spectral index of beta_all-sky=-2.99+-0.01 in the frequency range of 23-33
GHz. We find that the synchrotron spectral index steepens by 0.14 from low to
high Galactic latitudes, in agreement with previous studies, with mean spectral
indices of beta_plane=-2.98+-0.01 and beta_high-lat=-3.12+-0.04. In addition,
we find a significant longitudinal variation along the Galactic plane with a
steeper spectral index toward the Galactic center and anticenter than toward
the Galactic spiral arms. This can be well modeled by an offset sinusoidal,
beta(l)=-2.85+0.17sin(2l-90). Finally, we study synchrotron emission in the
BICEP2 field, in an attempt to understand whether the claimed detection of
large-scale B-mode polarization could be explained in terms of synchrotron
contamination. Adopting a spectral index of beta=-3.12, typical for high
Galactic latitudes, we find that the most likely bias corresponds to about 2%
of the reported signal (r=0.003). The flattest index allowed by the data in
this region is beta=-2.5, and under the assumption of a straight power-law
frequency spectrum, we find that synchrotron emission can account for at most
20% of the reported BICEP2 signal.Comment: 11 pages, 9 figures, updated to match version published in Ap
Anisotropic Inflation from Charged Scalar Fields
We consider models of inflation with U(1) gauge fields and charged scalar
fields including symmetry breaking potential, chaotic inflation and hybrid
inflation. We show that there exist attractor solutions where the anisotropies
produced during inflation becomes comparable to the slow-roll parameters. In
the models where the inflaton field is a charged scalar field the gauge field
becomes highly oscillatory at the end of inflation ending inflation quickly.
Furthermore, in charged hybrid inflation the onset of waterfall phase
transition at the end of inflation is affected significantly by the evolution
of the background gauge field. Rapid oscillations of the gauge field and its
coupling to inflaton can have interesting effects on preheating and
non-Gaussianities.Comment: minor changes, references added, figures are modified, conforms JCAP
published versio
Dynamics of Magnetized Bulk Viscous Strings in Brans-Dicke Gravity
We explore locally rotationally symmetric Bianchi I universe in Brans-Dicke
gravity with self-interacting potential by using charged viscous cosmological
string fluid. We use a relationship between the shear and expansion scalars and
also take the power law for scalar field as well as self-interacting potential.
It is found that the resulting universe model maintains its anisotropic nature
at all times due to the proportionality relationship between expansion and
shear scalars. The physical implications of this model are discussed by using
different parameters and their graphs. We conclude that this model corresponds
to an accelerated expanding universe for particular values of the parameters.Comment: 17 pages, 6 figure
- …
