1,069 research outputs found

    The shape of erosional arctic shoreface profiles

    Get PDF

    Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption

    Full text link
    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturisation. In particular, nanowires have been obtained from solution or vapour phase and have displayed high conductivity, or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive post-growth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimetre length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules

    Photophysics of indole upon x-ray absorption

    Full text link
    A photofragmentation study of gas-phase indole (C8_8H7_7N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon 1s1s orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.Comment: 11 pages, 6 figure

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Get PDF
    Citation: Boll, R., Erk, B., Coffee, R., Trippel, S., Kierspel, T., Bomme, C., . . . Rudenko, A. (2016). Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 3(4). doi:10.1063/1.4944344Additional Authors: Marchenko, T.;Miron, C.;Patanen, M.;Osipov, T.;Schorb, S.;Simon, M.;Swiggers, M.;Techert, S.;Ueda, K.;Bostedt, C.;Rolles, D.;Rudenko, A.Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. © 2016 Author(s)

    Diffraction effects in the Recoil-Frame Photoelectron Angular Distributions of Halomethanes

    Get PDF
    Citation: Bomme, C., Anielski, D., Savelyev, E., Boll, R., Erk, B., Bari, S., . . . Rolles, D. (2015). Diffraction effects in the Recoil-Frame Photoelectron Angular Distributions of Halomethanes. 635(11). doi:10.1088/1742-6596/635/11/112020We have measured the Recoil Frame-Photoelectron Angular Distributions (RF-PADs) for inner-shell photoionization of CH3F, CH3I and CF3I halomethane molecules for photoelectron energies up to 300 eV detected within a 4? solid angle in the gas-phase. For high kinetic energies, the RF-PADs are dominated by diffraction effects that encode information on the molecular geometry. © Published under licence by IOP Publishing Ltd

    Coulomb explosion imaging of small organic molecules at LCLS.

    No full text
    Fragmentation of small organic molecules by intense few-femtosecond X-ray free-electron laser pulses has been studied using Coulomb explosion imaging. By measuring kinetic energies and emission angles of the ionic fragments in coincidence, we disentangle different fragmentation pathways, for certain cases can reconstruct molecular geometry at the moment of explosion, and show how it depends on LCLS pulse duration
    corecore