18,055 research outputs found

    The derived category of quasi-coherent modules on an Artin stack via model structures

    No full text

    Transfinite tree quivers and their representations

    Full text link
    The idea of "vertex at the infinity" naturally appears when studying indecomposable injective representations of tree quivers. In this paper we formalize this behavior and find the structure of all the indecomposable injective representations of a tree quiver of size an arbitrary cardinal κ\kappa. As a consequence the structure of injective representations of noetherian κ\kappa-trees is completely determined. In the second part we will consider the problem whether arbitrary trees are source injective representation quivers or not.Comment: to appear in Mathematica Scandinavic

    Graphs and networks theory

    Get PDF
    This chapter discusses graphs and networks theory

    Distributional Asymptotic Expansions of Spectral Functions and of the Associated Green Kernels

    Full text link
    Asymptotic expansions of Green functions and spectral densities associated with partial differential operators are widely applied in quantum field theory and elsewhere. The mathematical properties of these expansions can be clarified and more precisely determined by means of tools from distribution theory and summability theory. (These are the same, insofar as recently the classic Cesaro-Riesz theory of summability of series and integrals has been given a distributional interpretation.) When applied to the spectral analysis of Green functions (which are then to be expanded as series in a parameter, usually the time), these methods show: (1) The "local" or "global" dependence of the expansion coefficients on the background geometry, etc., is determined by the regularity of the asymptotic expansion of the integrand at the origin (in "frequency space"); this marks the difference between a heat kernel and a Wightman two-point function, for instance. (2) The behavior of the integrand at infinity determines whether the expansion of the Green function is genuinely asymptotic in the literal, pointwise sense, or is merely valid in a distributional (cesaro-averaged) sense; this is the difference between the heat kernel and the Schrodinger kernel. (3) The high-frequency expansion of the spectral density itself is local in a distributional sense (but not pointwise). These observations make rigorous sense out of calculations in the physics literature that are sometimes dismissed as merely formal.Comment: 34 pages, REVTeX; very minor correction

    Locally projective monoidal model structure for complexes of quasi-coherent sheaves on P^1(k)

    Full text link
    We will generalize the projective model structure in the category of unbounded complexes of modules over a commutative ring to the category of unbounded complexes of quasi-coherent sheaves over the projective line. Concretely we will define a locally projective model structure in the category of complexes of quasi-coherent sheaves on the projective line. In this model structure the cofibrant objects are the dg-locally projective complexes. We also describe the fibrations of this model structure and show that the model structure is monoidal. We point out that this model structure is necessarily different from other known model structures such as the injective model structure and the locally free model structure

    Surface Vacuum Energy in Cutoff Models: Pressure Anomaly and Distributional Gravitational Limit

    Full text link
    Vacuum-energy calculations with ideal reflecting boundaries are plagued by boundary divergences, which presumably correspond to real (but finite) physical effects occurring near the boundary. Our working hypothesis is that the stress tensor for idealized boundary conditions with some finite cutoff should be a reasonable ad hoc model for the true situation. The theory will have a sensible renormalized limit when the cutoff is taken away; this requires making sense of the Einstein equation with a distributional source. Calculations with the standard ultraviolet cutoff reveal an inconsistency between energy and pressure similar to the one that arises in noncovariant regularizations of cosmological vacuum energy. The problem disappears, however, if the cutoff is a spatial point separation in a "neutral" direction parallel to the boundary. Here we demonstrate these claims in detail, first for a single flat reflecting wall intersected by a test boundary, then more rigorously for a region of finite cross section surrounded by four reflecting walls. We also show how the moment-expansion theorem can be applied to the distributional limits of the source and the solution of the Einstein equation, resulting in a mathematically consistent differential equation where cutoff-dependent coefficients have been identified as renormalizations of properties of the boundary. A number of issues surrounding the interpretation of these results are aired.Comment: 22 pages, 2 figures, 1 table; PACS 03.70.+k, 04.20.Cv, 11.10.G

    Gastric perforation and pancreatitis manifesting after an inadvertent nissen fundoplication in a patient with superior mesenteric artery syndrome.

    Get PDF
    Superior mesenteric artery (SMA) syndrome is an uncommon but well-recognized clinical entity. It can lead to proximal small bowel obstruction and severe morbidity and mortality in lieu of late diagnosis and concomitant existing comorbidities. We report a 54-year-old female, with SMA syndrome which manifested itself after Nissen fundoplication along with two major complications. The diagnosis of SMA was established by clinical symptoms and radiological findings
    corecore