938 research outputs found

    Modeling Infection with Multi-agent Dynamics

    Get PDF
    Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited understanding of how infections spread within a small population because it has been difficult to closely track an infection within a complete community. The paper presents data closely tracking the spread of an infection centered on a student dormitory, collected by leveraging the residents' use of cellular phones. The data are based on daily symptom surveys taken over a period of four months and proximity tracking through cellular phones. We demonstrate that using a Bayesian, discrete-time multi-agent model of infection to model real-world symptom reports and proximity tracking records gives us important insights about infec-tions in small populations

    Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach

    Full text link
    We introduce a new method to efficiently approximate the number of infections resulting from a given initially-infected node in a network of susceptible individuals. Our approach is based on counting the number of possible infection walks of various lengths to each other node in the network. We analytically study the properties of our method, in particular demonstrating different forms for SIS and SIR disease spreading (e.g. under the SIR model our method counts self-avoiding walks). In comparison to existing methods to infer the spreading efficiency of different nodes in the network (based on degree, k-shell decomposition analysis and different centrality measures), our method directly considers the spreading process and, as such, is unique in providing estimation of actual numbers of infections. Crucially, in simulating infections on various real-world networks with the SIR model, we show that our walks-based method improves the inference of effectiveness of nodes over a wide range of infection rates compared to existing methods. We also analyse the trade-off between estimate accuracy and computational cost, showing that the better accuracy here can still be obtained at a comparable computational cost to other methods.Comment: 6 page

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Scaling laws for the movement of people between locations in a large city

    Full text link
    Large scale simulations of the movements of people in a ``virtual'' city and their analyses are used to generate new insights into understanding the dynamic processes that depend on the interactions between people. Models, based on these interactions, can be used in optimizing traffic flow, slowing the spread of infectious diseases or predicting the change in cell phone usage in a disaster. We analyzed cumulative and aggregated data generated from the simulated movements of 1.6 million individuals in a computer (pseudo agent-based) model during a typical day in Portland, Oregon. This city is mapped into a graph with 181,206181,206 nodes representing physical locations such as buildings. Connecting edges model individual's flow between nodes. Edge weights are constructed from the daily traffic of individuals moving between locations. The number of edges leaving a node (out-degree), the edge weights (out-traffic), and the edge-weights per location (total out-traffic) are fitted well by power law distributions. The power law distributions also fit subgraphs based on work, school, and social/recreational activities. The resulting weighted graph is a ``small world'' and has scaling laws consistent with an underlying hierarchical structure. We also explore the time evolution of the largest connected component and the distribution of the component sizes. We observe a strong linear correlation between the out-degree and total out-traffic distributions and significant levels of clustering. We discuss how these network features can be used to characterize social networks and their relationship to dynamic processes.Comment: 18 pages, 10 figure

    On the Computational Complexity of Measuring Global Stability of Banking Networks

    Full text link
    Threats on the stability of a financial system may severely affect the functioning of the entire economy, and thus considerable emphasis is placed on the analyzing the cause and effect of such threats. The financial crisis in the current and past decade has shown that one important cause of instability in global markets is the so-called financial contagion, namely the spreading of instabilities or failures of individual components of the network to other, perhaps healthier, components. This leads to a natural question of whether the regulatory authorities could have predicted and perhaps mitigated the current economic crisis by effective computations of some stability measure of the banking networks. Motivated by such observations, we consider the problem of defining and evaluating stabilities of both homogeneous and heterogeneous banking networks against propagation of synchronous idiosyncratic shocks given to a subset of banks. We formalize the homogeneous banking network model of Nier et al. and its corresponding heterogeneous version, formalize the synchronous shock propagation procedures, define two appropriate stability measures and investigate the computational complexities of evaluating these measures for various network topologies and parameters of interest. Our results and proofs also shed some light on the properties of topologies and parameters of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic

    Don't bleach chaotic data

    Full text link
    A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ``bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for inclusion of figures in text; figures are uufile'd into a single file of size 306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to incorporate final changes in the proofs and to make the LaTeX more portable; the paper will appear in CHAOS 4 (Dec, 1993

    Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri

    Get PDF
    Psychological stressors are known to affect colonic diseases but the mechanisms by which this occurs, and whether probiotics can prevent stressor effects, are not understood. Because inflammatory monocytes that traffic into the colon can exacerbate colitis, we tested whether CCL2, a chemokine involved in monocyte recruitment, was necessary for stressor-induced exacerbation of infectious colitis. Mice were exposed to a social disruption stressor that entails repeated social defeat. During stressor exposure, mice were orally challenged with Citrobacter rodentium to induce a colonic inflammatory response. Exposure to the stressor during challenge resulted in significantly higher colonic pathogen levels, translocation to the spleen, increases in colonic macrophages, and increases in inflammatory cytokines and chemokines. The stressor-enhanced severity of C. rodentium-induced colitis was not evident in CCL2[superscript −/−] mice, indicating the effects of the stressor are CCL2-dependent. In addition, we tested whether probiotic intervention could attenuate stressor-enhanced infectious colitis by reducing monocyte/macrophage accumulation. Treating mice with probiotic Lactobacillus reuteri reduced CCL2 mRNA levels in the colon and attenuated stressor-enhanced infectious colitis. These data demonstrate that probiotic L. reuteri can prevent the exacerbating effects of stressor exposure on pathogen-induced colitis, and suggest that one mechanism by which this occurs is through downregulation of the chemokine CCL2.National Cancer Institute (U.S.) (Grants AT006552-01A1, P30-CA016058, and T32-DE014320

    Morphosyntactic processing in late second-language learners

    Get PDF
    The goal of the present study was to investigate the electro- physiological correlates of second-language (L2) morphosyn- tactic processing in highly proficient late learners of an L2 with long exposure to the L2 environment. ERPs were col- lected from 22 English–Spanish late learners while they read sentences in which morphosyntactic features of the L2 present or not present in the first language (number and gender agree- ment, respectively) were manipulated at two different sentence positions—within and across phrases. The results for a control group of age-matched native-speaker Spanish participants in- cluded an ERP pattern of LAN-type early negativity followed by P600 effect in response to both agreement violations and for both sentence positions. The late L2 learner results included a similar pattern, consisting of early negativity followed by P600, in the first sentence position (within-phrase agreement viola- tions) but only P600 effects in the second sentence position (across-phrase agreement violation), as well as significant am- plitude and onset latency differences between the gender and the number violation effects in both sentence positions. These results reveal that highly proficient learners can show electro- physiological correlates during L2 processing that are qualita- tively similar to those of native speakers, but the results also indicate the contribution of factors such as age of acquisition and transfer processes from first language to L

    Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces

    Full text link
    Reproducing kernel Hilbert spaces (RKHSs) play an important role in many statistics and machine learning applications ranging from support vector machines to Gaussian processes and kernel embeddings of distributions. Operators acting on such spaces are, for instance, required to embed conditional probability distributions in order to implement the kernel Bayes rule and build sequential data models. It was recently shown that transfer operators such as the Perron-Frobenius or Koopman operator can also be approximated in a similar fashion using covariance and cross-covariance operators and that eigenfunctions of these operators can be obtained by solving associated matrix eigenvalue problems. The goal of this paper is to provide a solid functional analytic foundation for the eigenvalue decomposition of RKHS operators and to extend the approach to the singular value decomposition. The results are illustrated with simple guiding examples

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents
    corecore