101 research outputs found
Conformally covariant quantization of Maxwell field in de Sitter space
In this article, we quantize the Maxwell ("massless spin one") de Sitter
field in a conformally invariant gauge. This quantization is invariant under
the SO group and consequently under the de Sitter group. We obtain a
new de Sitter invariant two-points function which is very simple. Our method
relies on the one hand on a geometrical point of view which uses the
realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections
of the null cone in \setR^6 and a moving plane, and on the other hand on a
canonical quantization scheme of the Gupta-Bleuler type.Comment: v2 is is the definitive (improved compare to v1) versio
Conformal invariance: from Weyl to SO(2,d)
The present work deals with two different but subtilely related kinds of
conformal mappings: Weyl rescaling in dimensional spaces and SO(2,d)
transformations. We express how the difference between the two can be
compensated by diffeomorphic transformations. This is well known in the
framework of String Theory but in the particular case of spaces. Indeed,
the Polyakov formalism describes world-sheets in terms of two-dimensional
conformal field theory. On the other hand, B. Zumino had shown that a classical
four-dimensional Weyl-invariant field theory restricted to live in Minkowski
space leads to an SO(2,4)-invariant field theory. We extend Zumino's result to
relate Weyl and SO(2,d) symmetries in arbitrary conformally flat spaces (CFS).
This allows us to assert that a classical -invariant field does not
distinguish, at least locally, between two different -dimensional CFSs.Comment: 5 pages, no figures. There are slight modifications to match with the
published versio
Liaison sans fils à 60 GHz et réseau domestique multi-gigabit/s basé sur une infrastructure radio sur fibre bas coût
National audienceLe projet FUI8 ORIGIN (Optical Radio Infrastructure for Gigabit/s Indoor Network) s'adresse au marché du Réseau Local Domestique (RLD) en proposant une infrastructure bas coût qui combine l'efficacité de la fibre optique pour la diffusion radio avec les avantages d'une transmission sans fils. Les premières réalisations et les tests réussis sont présentés dans ce papier
Conformal use of retarded Green's functions for the Maxwell field in de Sitter space
We propose a new propagation formula for the Maxwell field in de Sitter space
which exploit the conformal invariance of this field together with a conformal
gauge condition. This formula allows to determine the classical electromagnetic
field in the de Sitter space from given currents and initial data. It only uses
the Green's function of the massless Minkowskian scalar field. This leads to
drastic simplifications in practical calculations. We apply this formula to the
classical problem of the two charges of opposite signs at rest at the North and
South Poles of the de Sitter space.Comment: 19 pages, 4 figures, Revte
Electronic Business Contracts Between Services
International audienceElectronic contracts mirror the paper versions exchanged between businesses today, and offer the possibility of dynamic, automatic creation and enforcement of restrictions and compulsions on service behaviour that are designed to ensure business objectives are met. Where there are many contracts within a particular application, it can be difficult to determine whether the system can reliably fulfil them all, yet computer-parsable electronic contracts may allow such verification to be automated. In this chapter, we describe a conceptual framework and architecture specification in which normative business contracts can be electronically represented, verified, established, renewed, and so on. In particular, we aim to allow systems containing multiple contracts to be checked for conflicts and violations of business objectives. We illustrate the framework and architecture with an aerospace aftermarket example
Real-time hardware emulation of neural cultures: A comparative study of invitro, in silico and in duris silico models
Biological neural networks are well known for their capacity to process information with extremely low power consumption. Fields such as Artificial Intelligence, with high computational costs, are seeking for alternatives inspired in biological systems. An inspiring alternative is to implement hardware architectures that replicate the behavior of biological neurons but with the flexibility in programming capabilities of an electronic device, all combined with a relatively low operational cost. To advance in this quest, here we analyze the capacity of the HEENS hardware architecture to operate in a similar manner as an in vitro neuronal network grown in the laboratory. For that, we considered data of spontaneous activity in living neuronal cultures of about 400 neurons and compared their collective dynamics and functional behavior with those obtained from direct numerical simulations (in silico) and hardware implementations (in duris silico). The results show that HEENS is capable to mimic both the in vitro and in silico systems with high efficient-cost ratio, and on different network topological designs. Our work shows that compact low-cost hardware implementations are feasible, opening new avenues for future, highly efficient neuromorphic devices and advanced human–machine interfacing
Noise-driven amplification mechanisms governing the emergence of coherent extreme events in excitable systems
The physics governing the formation of extreme coherent events, i.e., the systemwide emergence of an observable taking extraordinary values in a short time window, is a relevant yet elusive problem to a variety of disciplines ranging from climate science to neuroscience. Despite their inherent differences, systems exhibiting episodes of extreme coherence can be abstracted as a set of coupled nonlinear elements in a noisy and networked environment. Here, we propose a model describing the generation of extreme coherence by exploring theoretically and numerically the capacity of noise and network correlations to amplify a critical core of the system and trigger an extreme event. Although we principally center our study in modeling bursting phenomena in neuronal circuits, we extend our analysis to other systems such as algae blooms and infectious diseases. We show that extreme events originate in a relatively small core of the system and that different cores may coexist. We also show that the amplification mechanisms within a system are highly robust, so that the deletion of central nodes leads to other nodes taking leadership
Irrigation and energy: Issues and challenges
Water‐efficient agriculture has implied a large increase in energy consumption for irrigation in recent decades. In many irrigation systems, energy costs are now threatening their sustainability. However, new opportunities have arisen for the use of renewable energies in the irrigation sector. These are some of the aspects of the multifaceted multiple‐actor 'water–food–energy' nexus. Technical, economic and environmental issues are linked in many ways, involving farmers, water users' associations, energy suppliers, engineers and other stakeholders. The ICID session 'Irrigation and energy' triggered discussions on these multiple dimensions. This paper presents a synthesis of the presentations, discussions and conclusions. Four main questions are addressed: How do irrigation productivity and sustainability of water resources exploitation change when farmers have access to energy? What do we know about energy efficiency in irrigation systems, at farm and collective network levels? How can this efficiency be optimized by using advanced technologies, modelling tools, improved management? Is energy production an opportunity for irrigation systems? These questions have been posed based on multiple case studies from different parts of the world. The BRL network, in southern France, illustrates advanced strategies and opportunities to reduce energy consumption and develop energy production at a network level. General conclusions are drawn from this synthesis, illustrating trade‐offs and synergies that can be identified in the irrigation sector at different scales, while opportunities for future research are proposed
SARS-CoV-2 congenital infection and pre-eclampsia-like syndrome in dichorionic twins: A case report and review of the literature
Although the route of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mainly respiratory, vertical transmission seems possible.1 We report the case of a woman with a dichorionic diamniotic twin pregnancy admitted to Hospital Clínico Universitario Lozano Blesa at 38+4 weeks of gestation due to severe pre-eclampsia in the context of a SARS-CoV-2 infection (positive nasopharyngeal PCR; Viasure, CerTest Biotec., Zaragoza, Spain) with a probable transplacental transmission of the virus to both twins..
- …
