211 research outputs found

    Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study

    Get PDF
    Conductive polymer composites have wide ranging applications, but when they are produced by conventional melt blending, high conductive filler loadings are normally required, hindering their processability and reducing mechanical properties. In this study, two types of polymer-polymer composites were studied: i) microfibrillar composites (MFC) of polypropylene (PP) and 5 wt% carbon nanotube (CNT) loaded poly(butylene terephthalate) (PBT) as reinforcement, and ii) maleic anhydride-grafted polypropylene (PP-g-MA) compatibilizer, loaded with 5 wt% CNTs introduced into an MFC of PP and poly(ethylene terephthalate) (PET) in concentrations of 5 and 10 wt%. For the compatibilized composite type, PP and PET were melt-blended, cold-drawn and pelletized, followed by dry-mixing with PP-g-MA/CNT, re-extrusion at 200°C, and cold-drawing. The drawn blends produced were compression moulded to produce sheets with MFC structure. Using scanning electron microscopy, CNTs coated with PP-g-MA could be observed at the interface between PP matrix and PET microfibrils in the compatibilized blends. The volume resistivities tested by four-point test method were: 2.87•108 and 9.93•107 Ω•cm for the 66.5/28.5/5 and 63/27/10 (by wt%) PP/PET/(PP-g-MA/CNT) blends, corresponding to total CNT loadings (in the composites) of 0.07 vol% (0.24 wt%) and 0.14 vol% (0.46 wt%), respectively. For the non-compatibilized MFC types based on PP/(PBT/CNT) with higher and lower melt flow grades of PP, the resistivities of 70/(95/5) blends were 1.9•106 and 1.5•107 Ω•cm, respectively, corresponding to a total filler loading (in the composite) of 0.44 vol% (1.5 wt%) in both MFCs

    Selection rules in three-body B decay from factorization

    Get PDF
    Extending the dynamics underlying the factorization calculation of two-body decays, we propose simple selection rules for nonresonant three-body B decays. We predict, for instance, that in the Dalitz plot of B^0-->D^0-bar\pi^+\pi^-, practically no events should be found in the corner of E(\pi^+) < \Lambda_{QCD} as compared with the corner of E(\pi^-) < \Lambda_{QCD}. We also predict that there should be very few three-body decay events with a soft meson resonance and two energetic mesons or meson resonances. The selection rules are quite different from the soft pion theorem, since they apply to different kinematical regions. For B^0 -->D^0-bar\pi^+\pi^-, the latter predicts that the decay matrix element vanishes in the zero-four-momentum limit of \pi^+ instead of \pi^-. Since this marked difference from the soft pion theorem is directly related to the issue of short-distance QCD dominance in the FSI of two-body B decays, experimental test of the selection rules will shed light on strong interaction dynamics of B decay.Comment: 12 pages in REVTEX including 3 eps figure

    Decay constants of P and D-wave heavy-light mesons

    Full text link
    We investigate decay constants of P and D-wave heavy-light mesons within the mock-meson approach. Numerical estimates are obtained using the relativistic quark model. We also comment on recent calculations of heavy-light pseudo-scalar and vector decay constants.Comment: REVTeX, 22 pages, uses epsf macro, 8 postscript figures include

    Rare Semileptonic Decays of Heavy Mesons with Flavor SU(3) Symmetry

    Full text link
    In this paper, we calculate the decay rates of D+D0e+νD^+ \to D^0 e^+ \nu, DS+D0e+νD^+_S \to D^0 e^+ \nu, BS0B+eνˉB^0_S \to B^+ e^- \bar{\nu}, DS+D+ee+D^+_S \to D^+ e^- e^+ and BS0B0ee+B^0_S \to B^0 e^-e^+ semileptonic decay processes, in which only the light quarks decay, while the heavy flavors remain unchanged. The branching ratios of these decay processes are calculated with the flavor SU(3) symmetry. The uncertainties are estimated by considering the SU(3) breaking effect. We find that the decay rates are very tiny in the framework of the Standard Model. We also estimate the sensitivities of the measurements of these rare decays at the future experiments, such as BES-III, super-BB and LHC-bb.Comment: 4 pages and 1 figure, accepted by European Physical Journal

    Test of Factorization Hypothesis from Exclusive Non-leptonic B decays

    Get PDF
    We investigate the possibility of testing factorization hypothesis in non-leptonic exclusive decays of B-meson. In particular, we considered the non factorizable \bar{B^0} -> D^{(*)+} D_s^{(*)-} modes and \bar{B^0} -> D^{(*)+} (\pi^-, \rho^-) known as well-factorizable modes. By taking the ratios BR(\bar{B^0}-> D^{(*)+}D_s^{(*)-})/BR(\bar{B^0}-> D^{(*)+}(\pi^-,\rho^-)), we found that under the present theoretical and experimental uncertainties there's no evidence for the breakdown of factorization description to heavy-heavy decays of the B meson.Comment: 11 pages; submitted to PR

    A Phenomenological Analysis of Non-resonant Charm Meson Decays

    Get PDF
    We analyse the consequences of the usual assumption of a constant function to fit non-resonant decays from experimental Dalitz plot describing charmed meson decays. We first show, using the D+Kˉ0π+π0D^+\to \bar{K}^0\pi^+\pi^0 decay channel as an example, how an inadequate extraction of the non-resonant contribution could yield incorrect measurements for the resonant channels. We analyse how the correct study of this decay will provide a test for the validity of factorization in D meson decays. Finally, we show how form factors could be extracted from non-resonant decays. We particularly discuss about the form factor that can be measured from the Ds+ππ+π+D^+_s\to \pi^-\pi^+\pi^+ decay. We emphasize on its relevance for the study of the decay τντ3π\tau \to \nu_{\tau} 3\pi and the extraction of the a1a_1 meson width.Comment: 14 pages, Latex including 6 eps figure

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Experimental Tests of Factorization in Charmless Non-Leptonic Two-Body B Decays

    Get PDF
    Using a theoretical framework based on the next-to-leading order QCD-improved effective Hamiltonian and a factorization Ansatz for the hadronic matrix elements of the four-quark operators, we reassess branching fractions in two-body non-leptonic decays BPP,PV,VVB \to PP, PV, VV, involving the lowest lying light pseudoscalar (P)(P) and vector (V)(V) mesons in the standard model. Using the sensitivity of the decay rates on the effective number of colors, NcN_c, as a criterion of theoretical predictivity, we classify all the current-current (tree) and penguin transitions in five different classes. The recently measured charmless two-body BPPB \to PP decays (B+K+η,B0K0η,B0K+π,B+π+K0(B^+ \to K^+ \eta^\prime, B^0 \to K^0 \eta^\prime, B^0 \to K^+\pi^-, B^+ \to \pi^+ K^0 and charge conjugates) are dominated by the NcN_c-stable QCD penguins (class-IV transitions) and their estimates are consistent with data. The measured charmless BPVB \to PV (B+ωK+, B+ωh+)(B^+ \to \omega K^+, ~B^+ \to \omega h^+) and BVVB\to VV transition (BϕK)(B \to \phi K^*), on the other hand, belong to the penguin (class-V) and tree (class-III) transitions. The class-V penguin transitions are in general more difficult to predict. We propose a number of tests of the factorization framework in terms of the ratios of branching ratios for some selected Bh1h2B \to h_1 h_2 decays involving light hadrons h1h_1 and h2h_2, which depend only moderately on the form factors. We also propose a set of measurements to determine the effective coefficients of the current-current and QCD penguin operators. The potential impact of Bh1h2B \to h_1 h_2 decays on the CKM phenomenology is emphasized by analyzing a number of decay rates in the factorization framework.Comment: 64 pages (LaTex) including 13 figures, requires epsfig.sty; submitted to Phys. Rev.

    CP violation and CKM phases from angular distributions for BsB_s decays into admixtures of CP eigenstates

    Get PDF
    We investigate the time-evolutions of angular distributions for BsB_s decays into final states that are admixtures of CP-even and CP-odd configurations. A sizable lifetime difference between the BsB_s mass eigenstates allows a probe of CP violation in time-dependent untagged angular distributions. Interference effects between different final state configurations of BsDs+DsB_s\to D^{*+}_s D^{*-}_s, J/ψϕJ/\psi \phi determine the Wolfenstein parameter η\eta from untagged data samples, or -- if one uses Vub/Vcb|V_{ub}|/|V_{cb}| as an additional input -- the notoriously difficult to measure CKM angle γ\gamma. Another determination of γ\gamma is possible by using isospin symmetry of strong interactions to relate untagged data samples of BsK+KB_s\to K^{\ast+} K^{\ast-} and BsK0K0B_s\to K^{\ast0} \overline{K^{\ast0}}. We note that the untagged angular distribution for Bsρ0ϕB_s\to\rho^0 \phi provides interesting information about electroweak penguins.Comment: 19 pages, LaTeX, no figure
    corecore