54 research outputs found

    The Spitzer Extragalactic Representative Volume Survey (SERVS): The Environments of High-z SDSS Quasi-Stellar-Objects

    Get PDF
    This paper presents a study of the environments of SDSS Quasi-Stellar-Objects (QSOs) in the Spitzer Extragalactic Representative Volume Survey (SERVS). We concentrate on the high-redshift QSOs as these have not been studied in large numbers with data of this depth before. We use the IRAC 3.6-4.5{\mu}m colour of objects and ancillary r-band data to filter out as much foreground contamination as possible. This technique allows us to find a significant (> 4-{\sigma}) over-density of galaxies around QSOs in a redshift bin centred on z ~ 2.0 and a (> 2-{\sigma}) over-density of galaxies around QSOs in a redshift bin centred on z ~ 3.3. We compare our findings to the predictions of a semi-analytic galaxy formation model, based on the {\Lambda}CDM millennium simulation, and find for both redshift bins that the model predictions match well the source-density we have measured from the SERVS data.Comment: 13 pages, 12 figures, Accepted by Ap

    Herschel ATLAS : the cosmic star formation history of quasar host galaxies

    Get PDF
    We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 z 6 and absolute I-band magnitudes -22 > I-AB > -32 We use the science demonstration observations of the first similar to 16 deg(2) from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at > 5 sigma at 250, 350 and 500 mu m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > I-AB > -24 have a comoving star formation rate (derived from 100 mu m rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with I-AB -26 have a maximum contribution to the star formation density at z similar to 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)(2.3 +/- 0.7) at z 2, but the evolution at higher luminosities is much faster reaching (1 + z)(10 +/- 1) at -26 > I-AB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation

    Black hole masses, accretion rates and hot- and cold-mode accretion in radio galaxies at z ~ 1

    Get PDF
    Date of Acceptance: 25/11/2014Understanding the evolution of accretion activity is fundamental to our understanding of how galaxies form and evolve over the history of the Universe. We analyse a complete sample of 27 radio galaxies which includes both high-excitation galaxies (HEGs) and low-excitation galaxies (LEGs), spanning a narrow redshift range of 0.9 < z < 1.1 and covering a factor of ~1000 in radio luminosity. Using data from the Spitzer Space Telescope combined with ground-based optical and near-infrared imaging, we show that the host galaxies have masses in the range of 10.7<log10(M/M⊙)<12.0with HEGs and LEGs exhibiting no difference in their mass distributions. We also find that HEGs accrete at significantly higher rates than LEGs, with the HEG/LEG division lying at an Eddington ratio of λ~0.04, which is in excellent agreement with theoretical predictions of where the accretion rate becomes radiatively inefficient, thus supporting the idea of HEGs and LEGs being powered by different modes of accretion. Our study also shows that at least up to L151MHz ~ 3 × 1027WHz-1 sr-1, HEGs and LEGs are indistinguishable in terms of their radio properties. From this result we infer that, at least for the lower radio luminosity range, another factor besides accretion rate must play an important role in the process of triggering jet activity.Peer reviewe

    The environments of luminous radio galaxies and type-2 quasars

    Get PDF
    We present the results of a comparison between the environments of (1) a complete sample of 46 southern 2-Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7), (2) a complete sample of 20 radio-quiet type-2 quasars (0.3 ≤ z ≤ 0.41), and (3) a control sample of 107 quiescent early-type galaxies at 0.2 ≤ z < 0.7 in the Extended Groth Strip. The environments have been quantified using angular clustering amplitudes (Bgq) derived from deep optical imaging data. Based on these comparisons, we discuss the role of the environment in the triggering of powerful radio-loud and radio-quiet quasars. When we compare the Bgq distributions of the type-2 quasars and quiescent early-type galaxies, we find no significant difference between them. This is consistent with the radio-quiet quasar phase being a short-lived but ubiquitous stage in the formation of all massive early-type galaxies. On the other hand, powerful radio galaxies are in denser environments than the quiescent population, and this difference between distributions of Bgq is significant at the 3σ level. This result supports a physical origin of radio loudness, with high-density gas environments favouring the transformation of active galactic nucleus (AGN) power into radio luminosity, or alternatively, affecting the properties of the supermassive black holes themselves. Finally, focusing on the radio-loud sources only, we find that the clustering of weak-line radio galaxies (WLRGs) is higher than the strong-line radio galaxies (SLRGs), constituting a 3σ result. 82 per cent of the 2-Jy WLRGs are in clusters, according to our definition (Bgq ≳ 400), versus only 31 per cent of the SLRGs

    Rasch analysis of the Patient and Observer Scar Assessment Scale (POSAS) in burn scars

    Get PDF
    The Patient and Observer Scar Assessment Scale (POSAS) is a questionnaire that was developed to assess scar quality. It consists of two separate six-item scales (Observer Scale and Patient Scale), both of which are scored on a 10-point rating scale. After many years of experience with this scale in burn scar assessment, it is appropriate to examine its psychometric properties using Rasch analysis. Cross-sectional data collection from seven clinical trials resulted in a data set of 1,629 observer scores and 1,427 patient scores of burn scars. We examined the person-item map, item fit statistics, reliability, response category ordering, and dimensionality of the POSAS. The POSAS showed an adequate fit to the Rasch model, except for the item surface area. Person reliability of the Observer Scale and Patient Scale was 0.82 and 0.77, respectively. Dimensionality analysis revealed that the unexplained variance by the first contrast of both scales was 1.7 units. Spearman correlation between the Observer Scale Rasch measure and the overall opinion of the clinician was 0.75. The Rasch model demonstrated that the POSAS is a reliable and valid scale that measures the single-construct scar qualit

    Balancing medicine with a life

    Full text link

    Basic surgical training

    Full text link
    corecore