5,547 research outputs found
Comment on the narrow structure reported by Amaryan et al
The CLAS Collaboration provides a comment on the physics interpretation of
the results presented in a paper published by M. Amaryan et al. regarding the
possible observation of a narrow structure in the mass spectrum of a
photoproduction experiment.Comment: to be published in Physical Review
Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0
High-statistics measurements of differential cross sections and recoil
polarizations for the reaction have been
obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass
energies () from 1.69 to 2.84 GeV, with an extensive coverage in the
production angle. Independent measurements were made using the
() and () final-state topologies,
and were found to exhibit good agreement. Our differential cross sections show
good agreement with earlier CLAS, SAPHIR and LEPS results, while offering
better statistical precision and a 300-MeV increase in coverage.
Above GeV, - and -channel Regge scaling behavior
can be seen at forward- and backward-angles, respectively. Our recoil
polarization () measurements represent a substantial increase in
kinematic coverage and enhanced precision over previous world data. At forward
angles we find that is of the same magnitude but opposite sign as
, in agreement with the static SU(6) quark model prediction of
. This expectation is violated in some mid- and
backward-angle kinematic regimes, where and are of
similar magnitudes but also have the same signs. In conjunction with several
other meson photoproduction results recently published by CLAS, the present
data will help constrain the partial wave analyses being performed to search
for missing baryon resonances.Comment: 23 pages, 17 figure
Scaling of the F_2 structure function in nuclei and quark distributions at x>1
We present new data on electron scattering from a range of nuclei taken in
Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the
cross section for , which is sensitive to short range contributions to the
nuclear wave-function, and in deep inelastic scattering corresponds to probing
extremely high momentum quarks. This result agrees with higher energy muon
scattering measurements, but is in sharp contrast to neutrino scattering
measurements which suggested a dramatic enhancement in the distribution of the
`super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in
^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
π
+
electroproduction reaction
γ
∗
p
→
n
π
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Q
2
,
cos
(
θ
∗
)
, and
ϕ
∗
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction
New cross sections for the reaction are reported for total
center of mass energy =1.5--2.3 GeV and invariant squared momentum transfer
=0.13--3.3 GeV. This large kinematic range allows extraction of new
information about response functions, photocouplings, and coupling
strengths of baryon resonances. A sharp structure is seen at 1.7 GeV.
The shape of the differential cross section is indicative of the presence of a
-wave resonance that persists to high . Improved values are derived for
the photon coupling amplitude for the (1535) resonance. The new data
greatly expands the range covered and an interpretation of all data with
a consistent parameterization is provided.Comment: 31 pages, 9 figure
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably
unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential
for a 1 m segmented plastic scintillator detector placed downstream of the
beam-dump at one of the high intensity JLab experimental Halls, receiving up to
10 electrons-on-target (EOT) in a one-year period. This experiment
(Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at
the level of a thousand counts per year, with very low threshold recoil
energies (1 MeV), and limited only by reducible cosmogenic backgrounds.
Sensitivity to DM-electron elastic scattering and/or inelastic DM would be
below 10 counts per year after requiring all electromagnetic showers in the
detector to exceed a few-hundred MeV, which dramatically reduces or altogether
eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to
finalize the detector design and experimental set up. An existing 0.036 m
prototype based on the same technology will be used to validate simulations
with background rate estimates, driving the necessary RD towards an
optimized detector. The final detector design and experimental set up will be
presented in a full proposal to be submitted to the next JLab PAC. A fully
realized experiment would be sensitive to large regions of DM parameter space,
exceeding the discovery potential of existing and planned experiments by two
orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
Search for medium modification of the meson
The photoproduction of vector mesons on various nuclei has been studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. The
vector mesons, , , and , are observed via their decay to
, in order to reduce the effects of final state interactions in the
nucleus. Of particular interest are possible in-medium effects on the
properties of the meson. The spectral function is extracted from
the data on various nuclei, carbon, iron, and titanium, and compared to the
spectrum from liquid deuterium, which is relatively free of nuclear effects. We
observe no significant mass shift for the meson; however, there is some
widening of the resonance in titanium and iron, which is consistent with
expected collisional broadening.Comment: 8 pages, 4 figure
- …
