5,547 research outputs found

    Comment on the narrow structure reported by Amaryan et al

    Full text link
    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.Comment: to be published in Physical Review

    Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0

    Full text link
    High-statistics measurements of differential cross sections and recoil polarizations for the reaction γpK+Σ0\gamma p \rightarrow K^+ \Sigma^0 have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (s\sqrt{s}) from 1.69 to 2.84 GeV, with an extensive coverage in the K+K^+ production angle. Independent measurements were made using the K+pπK^{+}p\pi^{-}(γ\gamma) and K+pK^{+}p(π,γ\pi^-, \gamma) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in s\sqrt{s} coverage. Above s2.5\sqrt{s} \approx 2.5 GeV, tt- and uu-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization (PΣP_\Sigma) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that PΣP_\Sigma is of the same magnitude but opposite sign as PΛP_\Lambda, in agreement with the static SU(6) quark model prediction of PΣPΛP_\Sigma \approx -P_\Lambda. This expectation is violated in some mid- and backward-angle kinematic regimes, where PΣP_\Sigma and PΛP_\Lambda are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.Comment: 23 pages, 17 figure

    Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    Full text link
    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1x>1, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction γ ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q 2 < 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( θ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Full text link
    New cross sections for the reaction epeηpep \to e'\eta p are reported for total center of mass energy WW=1.5--2.3 GeV and invariant squared momentum transfer Q2Q^2=0.13--3.3 GeV2^2. This large kinematic range allows extraction of new information about response functions, photocouplings, and ηN\eta N coupling strengths of baryon resonances. A sharp structure is seen at WW\sim 1.7 GeV. The shape of the differential cross section is indicative of the presence of a PP-wave resonance that persists to high Q2Q^2. Improved values are derived for the photon coupling amplitude for the S11S_{11}(1535) resonance. The new data greatly expands the Q2Q^2 range covered and an interpretation of all data with a consistent parameterization is provided.Comment: 31 pages, 9 figure

    Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Full text link
    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m3^3 segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 1022^{22} electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies (\sim1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m3^3 prototype based on the same technology will be used to validate simulations with background rate estimates, driving the necessary R&\&D towards an optimized detector. The final detector design and experimental set up will be presented in a full proposal to be submitted to the next JLab PAC. A fully realized experiment would be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments by two orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4

    Search for medium modification of the ρ\rho meson

    Get PDF
    The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. The vector mesons, ρ\rho, ω\omega, and ϕ\phi, are observed via their decay to e+ee^+e^-, in order to reduce the effects of final state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the ρ\rho meson. The ρ\rho spectral function is extracted from the data on various nuclei, carbon, iron, and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no significant mass shift for the ρ\rho meson; however, there is some widening of the resonance in titanium and iron, which is consistent with expected collisional broadening.Comment: 8 pages, 4 figure
    corecore