1,775 research outputs found

    Algorithmic and Hardness Results for the Colorful Components Problems

    Full text link
    In this paper we investigate the colorful components framework, motivated by applications emerging from comparative genomics. The general goal is to remove a collection of edges from an undirected vertex-colored graph GG such that in the resulting graph GG' all the connected components are colorful (i.e., any two vertices of the same color belong to different connected components). We want GG' to optimize an objective function, the selection of this function being specific to each problem in the framework. We analyze three objective functions, and thus, three different problems, which are believed to be relevant for the biological applications: minimizing the number of singleton vertices, maximizing the number of edges in the transitive closure, and minimizing the number of connected components. Our main result is a polynomial time algorithm for the first problem. This result disproves the conjecture of Zheng et al. that the problem is NP NP-hard (assuming PNPP \neq NP). Then, we show that the second problem is APX APX-hard, thus proving and strengthening the conjecture of Zheng et al. that the problem is NP NP-hard. Finally, we show that the third problem does not admit polynomial time approximation within a factor of V1/14ϵ|V|^{1/14 - \epsilon} for any ϵ>0\epsilon > 0, assuming PNPP \neq NP (or within a factor of V1/2ϵ|V|^{1/2 - \epsilon}, assuming ZPPNPZPP \neq NP).Comment: 18 pages, 3 figure

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    On Fast and Robust Information Spreading in the Vertex-Congest Model

    Full text link
    This paper initiates the study of the impact of failures on the fundamental problem of \emph{information spreading} in the Vertex-Congest model, in which in every round, each of the nn nodes sends the same O(logn)O(\log{n})-bit message to all of its neighbors. Our contribution to coping with failures is twofold. First, we prove that the randomized algorithm which chooses uniformly at random the next message to forward is slow, requiring Ω(n/k)\Omega(n/\sqrt{k}) rounds on some graphs, which we denote by Gn,kG_{n,k}, where kk is the vertex-connectivity. Second, we design a randomized algorithm that makes dynamic message choices, with probabilities that change over the execution. We prove that for Gn,kG_{n,k} it requires only a near-optimal number of O(nlog3n/k)O(n\log^3{n}/k) rounds, despite a rate of q=O(k/nlog3n)q=O(k/n\log^3{n}) failures per round. Our technique of choosing probabilities that change according to the execution is of independent interest.Comment: Appears in SIROCCO 2015 conferenc

    Finding Connected Dense kk-Subgraphs

    Full text link
    Given a connected graph GG on nn vertices and a positive integer knk\le n, a subgraph of GG on kk vertices is called a kk-subgraph in GG. We design combinatorial approximation algorithms for finding a connected kk-subgraph in GG such that its density is at least a factor Ω(max{n2/5,k2/n2})\Omega(\max\{n^{-2/5},k^2/n^2\}) of the density of the densest kk-subgraph in GG (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected kk-subgraph problem on general graphs

    New Approximability Results for the Robust k-Median Problem

    Full text link
    We consider a robust variant of the classical kk-median problem, introduced by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust kk-Median problem}, we are given an nn-vertex metric space (V,d)(V,d) and mm client sets {SiV}i=1m\set{S_i \subseteq V}_{i=1}^m. The objective is to open a set FVF \subseteq V of kk facilities such that the worst case connection cost over all client sets is minimized; in other words, minimize maxivSid(F,v)\max_{i} \sum_{v \in S_i} d(F,v). Anthony et al.\ showed an O(logm)O(\log m) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(logm/loglogm)\Omega(\log m/ \log \log m) approximation hardness, unless NPδ>0DTIME(2nδ){\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}}). This hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.Comment: 19 page

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    Characterization of Binary Constraint System Games

    Full text link
    We consider a class of nonlocal games that are related to binary constraint systems (BCSs) in a manner similar to the games implicit in the work of Mermin [N.D. Mermin, "Simple unified form for the major no-hidden-variables theorems," Phys. Rev. Lett., 65(27):3373-3376, 1990], but generalized to n binary variables and m constraints. We show that, whenever there is a perfect entangled protocol for such a game, there exists a set of binary observables with commutations and products similar to those exhibited by Mermin. We also show how to derive upper bounds strictly below 1 for the the maximum entangled success probability of some BCS games. These results are partial progress towards a larger project to determine the computational complexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy or not.Comment: Revised version corrects an error in the previous version of the proof of Theorem 1 that arises in the case of POVM measurement

    A Characterization of Visibility Graphs for Pseudo-Polygons

    Full text link
    In this paper, we give a characterization of the visibility graphs of pseudo-polygons. We first identify some key combinatorial properties of pseudo-polygons, and we then give a set of five necessary conditions based off our identified properties. We then prove that these necessary conditions are also sufficient via a reduction to a characterization of vertex-edge visibility graphs given by O'Rourke and Streinu

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure
    corecore