3,459 research outputs found
Review of: The Ethics of Reproductive Technology (Kenneth D. Alpern ed., Oxford University Press 1992)
Review of: The Ethics of Reproductive Technology (Kenneth D. Alpern ed., Oxford University Press 1992). Additional readings, glossary, introduction, notes, preface. LC 92-8252; ISBN 0-19-507435-1. [370 pp. Paper $19.95. 200 Madison Avenue, New York NY 10016.
Enhancing Robustness and Immunization in geographical networks
We find that different geographical structures of networks lead to varied
percolation thresholds, although these networks may have similar abstract
topological structures. Thus, the strategies for enhancing robustness and
immunization of a geographical network are proposed. Using the generating
function formalism, we obtain the explicit form of the percolation threshold
for networks containing arbitrary order cycles. For 3-cycles, the
dependence of on the clustering coefficients is ascertained. The analysis
substantiates the validity of the strategies with an analytical evidence.Comment: 6 pages, 8 figure
Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster
The scaling properties of self-avoiding walks on a d-dimensional diluted
lattice at the percolation threshold are analyzed by a field-theoretical
renormalization group approach. To this end we reconsider the model of Y. Meir
and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via
renormalization its multifractal properties are directly accessible. While the
former first order perturbation did not agree with the results of other
methods, we find that the asymptotic behavior of a self-avoiding walk on the
percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 +
110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric
description of the available MC and exact enumeration data in a wide range of
dimensions 2<=d<=6.Comment: 4 pages, 2 figure
Multifractality of Brownian motion near absorbing polymers
We characterize the multifractal behavior of Brownian motion in the vicinity
of an absorbing star polymer. We map the problem to an O(M)-symmetric
phi^4-field theory relating higher moments of the Laplacian field of Brownian
motion to corresponding composite operators. The resulting spectra of scaling
dimensions of these operators display the convexity properties which are
necessarily found for multifractal scaling but unusual for power of field
operators in field theory. Using a field-theoretic renormalization group
approach we obtain the multifractal spectrum for absorbtion at the core of a
polymer star as an asymptotic series. We evaluate these series using
resummation techniques.Comment: 18 pages, revtex, 6 ps-figure
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Mini-Proceedings of the 15th meeting of the Working Group on Rad. Corrections and MC Generators for Low Energies
The mini-proceedings of the 15th Meeting of the "Working Group on Rad.
Corrections and MC Generators for Low Energies" held in Mainz on April 11,
2014, are presented. These meetings, started in 2006, have as aim to bring
together experimentalists and theorists working in the fields of meson
transition form factors, hadronic contributions to and the
effective fine structure constant, and development of Monte Carlo generators
and Radiative Corrections for precision e+e- and tau physics.Comment: 21 pages, 7 contributions. Editors: S. E. Mueller and G. Venanzon
Star copolymers in porous environments: scaling and its manifestations
We consider star polymers, consisting of two different polymer species, in a
solvent subject to quenched correlated structural obstacles. We assume that the
disorder is correlated with a power-law decay of the pair correlation function
g(x)\sim x^{-a}. Applying the field-theoretical renormalization group approach
in d dimensions, we analyze different scenarios of scaling behavior working to
first order of a double \epsilon=4-d, \delta=4-a expansion. We discuss the
influence of the correlated disorder on the resulting scaling laws and possible
manifestations such as diffusion controlled reactions in the vicinity of
absorbing traps placed on polymers as well as the effective short-distance
interaction between star copolymers.Comment: 13 pages, 3 figure
Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell
Nonlinear magneto-optical resonances have been measured in an extremely thin
cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural
isotopic composition. All hyperfine transitions of both isotopes have been
studied for a wide range of laser power densities, laser detunings, and ETC
wall separations. Dark resonances in the laser induced fluorescence (LIF) were
observed as expected when the ground state total angular momentum F_g was
greater than or equal to the excited state total angular momentum F_e. Unlike
the case of ordinary cells, the width and contrast of dark resonances formed in
the ETC dramatically depended on the detuning of the laser from the exact
atomic transition. A theoretical model based on the optical Bloch equations was
applied to calculate the shapes of the resonance curves. The model averaged
over the contributions from different atomic velocity groups, considered all
neighboring hyperfine transitions, took into account the splitting and mixing
of magnetic sublevels in an external magnetic field, and included a detailed
treatment of the coherence properties of the laser radiation. Such a
theoretical approach had successfully described nonlinear magneto-optical
resonances in ordinary vapor cells. Although the values of certain model
parameters in the ETC differed significantly from the case of ordinary cells,
the same physical processes were used to model both cases. However, to describe
the resonances in the ETC, key parameters such as the transit relaxation rate
and Doppler width had to be modified in accordance with the ETC's unique
features. Agreement between the measured and calculated resonance curves was
satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10
figures; accepted for publication in Physical Review
- …
