74 research outputs found

    Structure and microstructure evolution of Al-Mg-Si alloy processed by equal-channel angular pressing

    Get PDF
    An ultrafine grained Al–Mg–Si alloy was prepared by severe plastic deformation using the equal-channel angular pressing (ECAP) method. Samples were ECAPed through a die with an inner angle of F = 90° and outer arc of curvature of ¿ = 37° from 1 to 12 ECAP passes at room temperature following route Bc. To analyze the evolution of the microstructure at increasing ECAP passes, X-ray diffraction and electron backscatter diffraction analyses were carried out. The results revealed two distinct processing regimes, namely (i) from 1 to 5 passes, the microstructure evolved from elongated grains and sub-grains to a rather equiaxed array of ultrafine grains and (ii) from 5 to 12 passes where no change in the morphology and average grain size was noticed. In the overall behavior, the boundary misorientation angle and the fraction of high-angle boundaries increase rapidly up to 5 passes and at a lower rate from 5 to 12 passes. The crystallite size decreased down to about 45 nm with the increase in deformation. The influence of deformation on precipitate evolution in the Al–Mg–Si alloy was also studied by differential scanning calorimetry. A significant decrease in the peak temperature associated to the 50% of recrystallization was observed at increasing ECAP passes.Peer ReviewedPreprin

    The mitochondrial multi-omic response to exercise training across rat tissues

    Get PDF
    Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction

    Procédés d’oxydation en voie humide

    No full text
    National audienceno abstrac

    Chemometrics as a tool for the analysis of evolved gas during the thermal treatment of sewage sludge using coupled TG–FTIR

    No full text
    International audienceThe thermal decomposition of sewage sludge has been investigated using coupled TG–FTIR for long time experiment (10 h). The exploitation of the resulted data from FTIR is performed by the SIMPLe-to-use interactive self-modelling mixture analysis (SIMPLISMA) method and allows to identify some of the evolved gases and to obtain their relative concentration profiles versus time without prior knowledge of constituents. As shown, this method can work properly for mixture with overlapped bands but some compounds remain “invisible” to FTIR analysis. More of that for long time experiment, it is possible to extract a spectrometer baseline contribution, which contributes to minimise noise and time variation

    Modélisation du soudage à la molette

    Full text link
    corecore