86 research outputs found
Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2
TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry.
Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration
ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd.
Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to
10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this
accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that
this exposure resulted in a significant accumulation of copper and zinc but not of the other elements
measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied.
Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on
cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual
competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant
increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol
Cd/l exposure, and no variation was observed with copper.
Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate
buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium
Adoption of blockchain as a step forward in orthopedic practice
blockchain technology has gained popularity since the invention of bitcoin in 2008. It offers a decentralized and secure system for managing and protecting data. In the healthcare sector, where data protection and patient privacy are crucial, blockchain has the potential to revolutionize various aspects, including patient data management, orthopedic registries, medical imaging, research data, and the integration of Internet of things (IoT) devices. this manuscript explores the applications of blockchain in orthopedics and highlights its benefits. furthermore, the combination of blockchain with artificial intelligence (AI), machine learning, and deep learning can enable more accurate diagnoses and treatment recommendations. aI algorithms can learn from large datasets stored on the blockchain, leading to advancements in automated clinical decision-making. overall, blockchain technology has the potential to enhance data security, interoperability, and collaboration in orthopedics. while there are challenges to overcome, such as adoption barriers and data sharing willingness, the benefits offered by blockchain make it a promising innovation for the field
Hypocholesterolaemic Activity of Lupin Peptides : Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells
Literature indicates that peptic and tryptic peptides derived from the enzymatic hydrolysis of lupin protein are able to modulate cholesterol metabolism in human hepatic HepG2 cells and that part of these peptides are absorbed in a small intestine model based on differentiated human Caco-2 cells. In this paper, a co-culture system, including Caco-2 and HepG2 cells, was investigated with two objectives: (a) to verify whether cholesterol metabolism in HepG2 cells was modified by the peptides absorption through Caco-2 cells; (b) to investigate how lupin peptides influence cholesterol metabolism in Caco-2 cells. The experiments showed that the absorbed peptides, not only maintained their bioactivity on HepG2 cells, but that this activity was improved by the crosstalk of the two cells systems in co-culture. In addition, lupin peptides showed a positive influence on cholesterol metabolism in Caco-2 cells, decreasing the proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion
Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum
Recent investigations have focused on food-derived peptides as novel natural inhibitors of dipeptidyl peptidase IV (DPP-IV), a new target for diabetes. This study aimed to optimize fast, sensitive, and cost-effective DPP-IV assays in situ on human intestinal Caco-2 cells and ex vivo on human serum. Both assays were applied to investigate the inhibitory activity of soy and lupin peptides. The best conditions for in situ DPP-IV activity in Caco-2 cells were obtained using 2-day cells and 50 \ub5M Gly-Pro-AMC. Sitagliptin, used as reference inhibitor, showed a dose-dependent response with a 50% inhibition concentration (IC50) of 0.6 \ub5M. A lower IC50(0.2 \ub5M) was obtained for sitagliptin on human serum incubated with the substrate for 24 h. Both assays were applied to assess the activity of Lup1 (LTFPGSAED) and Soy1 (IAVPTGVA) on DPP-IV. Lup1 and Soy1 inhibited DPP-IV in situ, with IC50values of of 207.5 and 223.2 \ub5M, respectively, and maintained their inhibitory activity ex vivo on circulating DPP-IV with a slightly lower potency. These assays can be used to characterize the DPP-IV inhibitory activity of food-derived molecules more accurately than in vitro biochemical tests. This combined approach also considers their effects on the circulating form of DPP-IV, correlated to metabolic diseases
Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3)
A preceding paper has shown that a hempseed peptic hydrolysate displays a cholesterol-lowering activity with a statin-like mechanism of action in HepG2 cells and a potential hypoglycemic activity by the inhibition of dipeptidyl peptidase-IV in Caco-2 cells. In the framework of a research aimed at fostering the multifunctional behavior of hempseed peptides, we present here the identification and evaluation of some antioxidant peptides from the same hydrolysate. After evaluation of its diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, a trans-epithelial transport experiment was performed using differentiated Caco-2 cells that permitted the identification of five transported peptides that were synthesized and evaluated by measuring the oxygen radical absorbance capacity (ORAC), the ferric reducing antioxidant power (FRAP), and the 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), and diphenyl-2-picrylhydrazyl radical DPPH assays. The most active peptides, i.e. WVSPLAGRT (H2) and IGFLIIWV (H3), were then tested in cell assays. Both peptides were able to reduce the H2O2-induced reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) production levels in HepG2 cells, via the modulation of Nrf-2 and iNOS pathways, respectively
Extra virgin olive oil phenolic extract on human hepatic HEPG2 and intestinal CACO-2 cells: Assessment of the antioxidant activity and intestinal trans-epithelial transport
Effect of anti-gliadin IgY antibody on epithelial intestinal integrity and inflammatory response induced by gliadin
Alexithymia in juvenile primary headache sufferers: a pilot study
Starting in the 1990s, there has been accumulating evidence of alexithymic characteristics in adult patients with primary headache. Little research has been conducted, however, on the relationship between alexithymia and primary headache in developmental age. In their research on alexithymia in the formative years, the authors identified one of the most promising prospects for research, as discussed here. The aim of this study was to verify whether there is: (a) a link between tension-type headache and alexithymia in childhood and early adolescence; and (b) a correlation between alexithymia in children/preadolescents and their mothers. This study was based on an experimental group of 32 patients (26 females and 6 males, aged from 8 to 15 years, mean 11.2 ± 2.0) suffering from tension-type headache and 32 control subjects (26 females and 6 males, aged from 8 to 15 years, mean 11.8 ± 1.6). Tension-type headache was diagnosed by applying the International Headache Classification (ICHD-II, 2004). The alexithymic construct was measured using an Italian version of the Alexithymia Questionnaire for Children in the case of the juvenile patients and the Toronto Alexithymia Scale (TAS-20) for their mothers. Higher rates of alexithymia were observed in the children/preadolescents in the experimental group (EG) than in the control group; in the EG there was no significant correlation between the alexithymia rates in the children/preadolescents and in their mothers
Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface.
Contains fulltext :
108438.pdf (publisher's version ) (Open Access)Recent trials have questioned the safety of untargeted oral iron supplementation in developing regions. Excess of luminal iron could select for enteric pathogens at the expense of beneficial commensals in the human gut microflora, thereby increasing the incidence of infectious diseases. The objective of the current study was to determine the effect of high iron availability on virulence traits of prevalent enteric pathogens at the host-microbe interface. A panel of enteric bacteria was cultured under iron-limiting conditions and in the presence of increasing concentrations of ferric citrate to assess the effect on bacterial growth, epithelial adhesion, invasion, translocation and epithelial damage in vitro. Translocation and epithelial integrity experiments were performed using a transwell system in which Caco-2 cells were allowed to differentiate to a tight epithelial monolayer mimicking the intestinal epithelial barrier. Growth of Salmonella typhimurium and other enteric pathogens was increased in response to iron. Adhesion of S. typhimurium to epithelial cells markedly increased when these bacteria were pre-incubated with increasing iron concentration (P = 0.0001), whereas this was not the case for the non-pathogenic Lactobacillus plantarum (P = 0.42). Cellular invasion and epithelial translocation of S. typhimurium followed the trend of increased adhesion. Epithelial damage was increased upon incubation with S. typhimurium or Citrobacter freundii that were pre-incubated under iron-rich conditions. In conclusion, our data fit with the consensus that oral iron supplementation is not without risk as iron could, in addition to inducing pathogenic overgrowth, also increase the virulence of prevalent enteric pathogens
Coastal erosions problems connected with the anthropic pressure in the central mediterranean area: examples from Sicily (Italy)
- …
