181 research outputs found
Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?
A process based on particle evaporation, diffusion and redeposition is
applied iteratively to a two-dimensional object of arbitrary shape. The
evolution spontaneously transforms the object morphology, converging to
branched structures. Independently of initial geometry, the structures found
after long time present fractal geometry with a fractal dimension around 1.75.
The final morphology, which constantly evolves in time, can be considered as
the dynamic attractor of this evaporation-diffusion-redeposition operator. The
ensemble of these fractal shapes can be considered to be the {\em dynamical
equilibrium} geometry of a diffusion controlled self-transformation process.Comment: 4 pages, 5 figure
Optimal villi density for maximal oxygen uptake in the human placenta
We present a stream-tube model of oxygen exchange inside a human placenta
functional unit (a placentone). The effect of villi density on oxygen transfer
efficiency is assessed by numerically solving the diffusion-convection equation
in a 2D+1D geometry for a wide range of villi densities. For each set of
physiological parameters, we observe the existence of an optimal villi density
providing a maximal oxygen uptake as a trade-off between the incoming oxygen
flow and the absorbing villus surface. The predicted optimal villi density
is compatible to previous experimental measurements. Several
other ways to experimentally validate the model are also proposed. The proposed
stream-tube model can serve as a basis for analyzing the efficiency of human
placentas, detecting possible pathologies and diagnosing placental health risks
for newborns by using routine histology sections collected after birth
Screening effects in flow through rough channels
A surprising similarity is found between the distribution of hydrodynamic
stress on the wall of an irregular channel and the distribution of flux from a
purely Laplacian field on the same geometry. This finding is a direct outcome
from numerical simulations of the Navier-Stokes equations for flow at low
Reynolds numbers in two-dimensional channels with rough walls presenting either
deterministic or random self-similar geometries. For high Reynolds numbers,
when inertial effects become relevant, the distribution of wall stresses on
deterministic and random fractal rough channels becomes substantially dependent
on the microscopic details of the walls geometry. In addition, we find that,
while the permeability of the random channel follows the usual decrease with
Reynolds, our results indicate an unexpected permeability increase for the
deterministic case, i.e., ``the rougher the better''. We show that this complex
behavior is closely related with the presence and relative intensity of
recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure
Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes
This paper introduces a novel method to account for quantum disorder effects
into the classical drift-diffusion model of semiconductor transport through the
localization landscape theory. Quantum confinement and quantum tunneling in the
disordered system change dramatically the energy barriers acting on the
perpendicular transport of heterostructures. In addition they lead to
percolative transport through paths of minimal energy in the 2D landscape of
disordered energies of multiple 2D quantum wells. This model solves the carrier
dynamics with quantum effects self-consistently and provides a computationally
much faster solver when compared with the Schr\"odinger equation resolution.
The theory also provides a good approximation to the density of states for the
disordered system over the full range of energies required to account for
transport at room-temperature. The current-voltage characteristics modeled by
3-D simulation of a full nitride-based light-emitting diode (LED) structure
with compositional material fluctuations closely match the experimental
behavior of high quality blue LEDs. The model allows also a fine analysis of
the quantum effects involved in carrier transport through such complex
heterostructures. Finally, details of carrier population and recombination in
the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table
Interplay between geometry and flow distribution in an airway tree
Uniform fluid flow distribution in a symmetric volume can be realized through
a symmetric branched tree. It is shown here, however, that the flow
partitioning can be highly sensitive to deviations from exact symmetry if
inertial effects are present. This is found by direct numerical simulation of
the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is
quantified and found to depend on the Reynolds number. Moreover, for a given
Reynolds number, we show that the flow distribution depends on the aspect ratio
of the branching elements as well as their angular arrangement. Our results
indicate that physiological variability should be severely restricted in order
to ensure uniform fluid distribution in a tree. This study suggests that any
non-uniformity in the air flow distribution in human lungs should be influenced
by the respiratory conditions, rest or hard exercise
In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries
Dental caries is the most prevalent infection globally and a substantial economic burden in developed countries. Dietary sugars are the main risk factor, and drive increased proportions of acid-producing and acid-tolerating (aciduric) bacterial species within dental bio lms. Recent longitudinal studies have suggested that caries is most strongly correlated with total sugar intake, contrasting with the prevailing view that intake frequency is the primary determinant. To explore this possibility, we employed a computational model for supragingival plaque to systematically sample combinations of sugar frequency and total amount, allowing their independent contributions on the ratio of aciduric (i.e. cariogenic) to non-aciduric bacteria to be unambiguously determined. Sugar frequency was found to be irrelevant for either very high or very low daily total amounts as the simulated bio lm was predicted to be always or never cariogenic, respectively. Frequency was a determining factor for intermediate total amounts of sugar, including the estimated average human consumption. An increased risk of caries (i.e. high prevalence of aciduric/non-aciduric species) was predicted for high intake frequencies. Thus, both total amount and frequency of sugar intake may combine to in uence plaque cariogenicity. These ndings could be employed to support public guidance for dietary change, leading to improved oral healthcare
Non-lethal control of the cariogenic potential of an agent-based model for dental plaque
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments
Simultaneous assessment of acidogenesis-mitigation and specific bacterial growth-inhibition by dentifrices
Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices
- …
