673 research outputs found
Neutrino oscillations in matter of varying density
We consider two-family neutrino oscillations in a medium of
continuously-varying density as a limit of the process in a series of
constant-density layers. We construct analytic expressions for the conversion
amplitude at high energies within a medium with a density profile that is
piecewise linear. We compare some cases to understand the type of effects that
depend on the order of the material traversed by a neutrino beam.Comment: 10 page
Resolution of the Klein Paradox
We present a resolution of the Klein paradox within the framework of
one-particle relativistic quantum mechanics. Not only reflection becomes total
but the vacuum remains neutral as well. This is accomplished by replacing the
pair production process with virtual negative energy "incidence" within the
barrier in a similar manner to what is done with image charges in electrostatic
and virtual sources in optics.Comment: 9 pages, 8 figure
The Problem of Large Leptonic Mixing
Unlike in the quark sector where simple permutation symmetries can
generate the general features of quark masses and mixings, we find it
impossible (under conditions of hierarchy for the charged leptons and without
considering the see-saw mechanism or a more elaborate extension of the SM) to
guarantee large leptonic mixing angles with any general symmetry or
transformation of only known particles. If such symmetries exist, they must be
realized in more extended scenarios.Comment: RevTeX, 4 pages, no figure
On Neutrinos and Fermionic Mass Patterns
Recent data on neutrino mass differences are consistent with a hierarchical
neutrino mass structure strikingly similar to what is observed for the other
fermionic masses.Comment: 8pages, 2figure
High Energy Hadron-Nucleus Cross Sections and Their Extrapolation to Cosmic Ray Energies
Old models of the scattering of composite systems based on the Glauber model
of multiple diffraction are applied to hadron-nucleus scattering. We obtain an
excellent fit with only two free parameters to the highest energy
hadron-nucleus data available. Because of the quality of the fit and the
simplicity of the model it is argued that it should continue to be reliable up
to the highest cosmic ray energies. Logarithmic extrapolations of proton-proton
and proton-antiproton data are used to calculate the proton-air cross sections
at very high energy. Finally, it is observed that if the exponential behavior
of the proton-antiproton diffraction peak continues into the few TeV energy
range it will violate partial wave unitarity. We propose a simple modification
that will guarantee unitarity throughout the cosmic ray energy region.Comment: 8 pages, 9 postscript figures. This manuscript replaces a partial
manuscript incorrectly submitte
Casimir energy of a compact cylinder under the condition
The Casimir energy of an infinite compact cylinder placed in a uniform
unbounded medium is investigated under the continuity condition for the light
velocity when crossing the interface. As a characteristic parameter in the
problem the ratio is used, where and
are, respectively, the permittivity and permeability of the material
making up the cylinder and and are those for the
surrounding medium. It is shown that the expansion of the Casimir energy in
powers of this parameter begins with the term proportional to . The
explicit formulas permitting us to find numerically the Casimir energy for any
fixed value of are obtained. Unlike a compact ball with the same
properties of the materials, the Casimir forces in the problem under
consideration are attractive. The implication of the calculated Casimir energy
in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table;
minor corrections in English and misprints; version to be published in Phys.
Rev. D1
Stimulated Neutrino Transformation with Sinusoidal Density Profiles
Large amplitude oscillations between the states of a quantum system can be
stimulated by sinusoidal external potentials with frequencies that are similar
to the energy level splitting of the states or a fraction thereof. Situations
when the applied frequency is equal to an integer fraction of the energy level
splittings are known as parametric resonances. We investigate this effect for
neutrinos both analytically and numerically for the case of arbitrary numbers
of neutrino flavors. We look for environments where the effect may be observed
and find that supernova are the one realistic possibility due to the necessity
of both large densities and large amplitude fluctuations. The comparison of
numerical and analytic results of neutrino propagation through a model
supernova reveals it is possible to predict the locations and strengths of the
stimulated transitions that occur.Comment: 14 pages, 6 figure
Neutrino oscillations in structured matter
A layered material structure in a monochromatic neutrino beam produces
interference effects that could be used for the measurement of features of the
neutrino mass matrix. The phenomenon would be most useful at high energies.Comment: 18 pp of which two figure
On the non-Abelian Stokes theorem for SU(2) gauge fields
We derive a version of non-Abelian Stokes theorem for SU(2) gauge fields in
which neither additional integration nor surface ordering are required. The
path ordering is eliminated by introducing the instantaneous color orientation
of the flux. We also derive the non-Abelian Stokes theorem on the lattice and
discuss various terms contributing to the trace of the Wilson loop.Comment: Latex2e, 0+14 pages, 3 figure
Working with simple machines
A set of examples is provided that illustrate the use of work as applied to
simple machines. The ramp, pulley, lever and hydraulic press are common
experiences in the life of a student and their theoretical analysis therefore
makes the abstract concept of work more real. The mechanical advantage of each
of these systems is also discussed so that students can evaluate their
usefulness as machines.Comment: 9 pages, 4 figure
- …
