8,762 research outputs found
Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs
Metallic magnetic calorimeters (MMCs) are widely used for various experiments
in fields ranging from atomic and nuclear physics to x-ray spectroscopy,
laboratory astrophysics or material science. Whereas in previous experiments
single pixel detectors or small arrays have been used, for future applications
large arrays are needed. Therefore, suitable multiplexing techniques for MMC
arrays are currently under development. A promising approach for the readout of
large arrays is the microwave SQUID multiplexer that operates in the frequency
domain and that employs non-hysteretic rf-SQUIDs to transduce the detector
signals into a frequency shift of high resonators which can be monitored by
using standard microwave measurement techniques. In this paper we discuss the
design and the expected performance of a recently developed and fabricated 64
pixel detector array with integrated microwave SQUID multiplexer. First
experimental data were obtained characterizing dc-SQUIDs with virtually
identical washer design.Comment: 6 pages, 3 Figure
Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data
We investigate the discovery potential of the LHC experiments for R-parity
violating supersymmetric models with a stau as the lightest supersymmetric
particle (LSP) in the framework of minimal supergravity. We classify the final
states according to their phenomenology for different R-parity violating decays
of the LSP. We then develop event selection cuts for a specific benchmark
scenario with promising signatures for the first beyond the Standard Model
discoveries at the LHC. For the first time in this model, we perform a detailed
signal over background analysis. We use fast detector simulations to estimate
the discovery significance taking the most important Standard Model backgrounds
into account. Assuming an integrated luminosity of 1 inverse femtobarn at a
center-of-mass energy of 7 TeV, we perform scans in the parameter space around
the benchmark scenario we consider. We then study the feasibility to estimate
the mass of the stau-LSP. We briefly discuss difficulties, which arise in the
identification of hadronic tau decays due to small tau momenta and large
particle multiplicities in our scenarios.Comment: 26 pages, 18 figures, LaTeX; minor changes, final version published
in PR
The possibility of a metal insulator transition in antidot arrays induced by an external driving
It is shown that a family of models associated with the kicked Harper model
is relevant for cyclotron resonance experiments in an antidot array. For this
purpose a simplified model for electronic motion in a related model system in
presence of a magnetic field and an AC electric field is developed. In the
limit of strong magnetic field it reduces to a model similar to the kicked
Harper model. This model is studied numerically and is found to be extremely
sensitive to the strength of the electric field. In particular, as the strength
of the electric field is varied a metal -- insulator transition may be found.
The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p
Experimental Observation of a Fundamental Length Scale of Waves in Random Media
Waves propagating through a weakly scattering random medium show a pronounced
branching of the flow accompanied by the formation of freak waves, i.e.,
extremely intense waves. Theory predicts that this strong fluctuation regime is
accompanied by its own fundamental length scale of transport in random media,
parametrically different from the mean free path or the localization length. We
show numerically how the scintillation index can be used to assess the scaling
behavior of the branching length. We report the experimental observation of
this scaling using microwave transport experiments in quasi-two-dimensional
resonators with randomly distributed weak scatterers. Remarkably, the scaling
range extends much further than expected from random caustics statistics.Comment: 5 pages, 5 figure
Nonlinear Dynamics of Composite Fermions in Nanostructures
We outline a theory describing the quasi-classical dynamics of composite
fermions in the fractional quantum Hall regime in the potentials of arbitrary
nanostructures. By an appropriate parametrization of time we show that their
trajectories are independent of their mass and dispersion. This allows to study
the dynamics in terms of an effective Hamiltonian although the actual
dispersion is as yet unknown. The applicability of the theory is verified in
the case of antidot arrays where it explains details of magnetoresistance
measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip
Personalized Prediction of Lifetime Benefits with Statin Therapy for Asymptomatic Individuals: A Modeling Study
Background: Physicians need to inform asymptomatic individuals about personalized outcomes of statin therapy for primary prevention of cardiovascular disease (CVD). However, current prediction models focus on short-term outcomes and ignore the competing risk of death due to other causes. We aimed to predict the potential lifetime benefits with statin therapy, taking into account competing risks. Methods and Findings: A microsimulation model based on 5-y follow-up data from the Rotterdam Study, a population-based cohort of individuals aged 55 y and older living in the Ommoord district of Rotterdam, the Netherlands, was used to estimate lifetime outcomes with and without statin therapy. The model was validated in-sample using 10-y follow-up data. We used baseline variables and model output to construct (1) a web-based calculator for gains in total and CVD-free life expectancy and (2) color charts for comparing these gains to the Systematic Coronary Risk Evaluation (SCORE) charts. In 2,428 participants (mean age 67.7 y, 35.5% men), statin therapy increased total life expectancy by 0.3 y (SD 0.2) and CVD-free life expectancy by 0.7 y (SD 0.4). Age, sex, smoking, blood pressure, hypertension, lipids, diabetes, glucose, body mass index, waist-to-hip ratio, and creatinine were included in the calculator. Gains in total and CVD-free life expectancy increased with blood pressure, unfavorable lipid levels, and body mass index after multivariable adjustment. Gains decreased considerably with advancing age, while SCORE 10-y CVD mortality risk increased with age. Twenty-five percent of participants with a low SCORE risk achieved equal or larger gains in CVD-free life expectancy than the median gain in participants with a high SCORE risk. Conclusions: We developed tools to predict personalized increases in total and CVD-free life expectancy with statin therapy. The predicted gains we found are small. If the underlying model is validated in an independent cohort, the tools may be useful in discussing with patients their individual outcomes with statin therapy. Please see later in the article for the Editors' Summar
- …
