1,496 research outputs found
Instanton induced charged fermion and neutrino masses in a minimal Standard Model scenario from intersecting D-branes
String instanton Yukawa corrections from Euclidean D-branes are investigated
in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1)
D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it
is found that superpotential contributions are induced by string instantons for
the perturbatively forbidden entries of the up and down quark mass matrices.
Analogous non-perturbative effects generate heavy Majorana neutrino masses and
a Dirac neutrino texture with factorizable Yukawa couplings. For this latter
case, a specific example is worked out where it is shown how this texture can
reconcile the neutrino data.Comment: 17 pages, 3 figure
Validation of Drug-Like Inhibitors against Mycobacterium Tuberculosis L-Aspartate α-Decarboxylase Using Nuclear Magnetic Resonance (1H NMR)
10.1371/journal.pone.0045947PLoS ONE79
Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy
N-flation
The presence of many axion fields in four-dimensional string vacua can lead
to a simple, radiatively stable realization of chaotic inflation.Comment: 16 pages, 0 figures, latex; v2: added refs; v3: more refs, correction
to \S2.
Non-perturbative effective interactions from fluxes
Motivated by possible implications on the problem of moduli stabilization and
other phenomenological aspects, we study D-brane instanton effects in flux
compactifications. We focus on a local model and compute non-perturbative
interactions generated by gauge and stringy instantons in a N = 1 quiver theory
with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model
is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and
its non-perturbative sectors are described by introducing fractional
D-instantons. We find a rich variety of instanton-generated F- and D-term
interactions, ranging from superpotentials and Beasley-Witten like
multi-fermion terms to non-supersymmetric flux-induced instanton interactions.Comment: 37 pages, 7 figures. Final version published on JHEP. Section 4
modified in several points regarding string corrections in absence of fluxes;
in particular, section 4.3 is removed. Some other minor changes and two
references adde
Dynamical supersymmetry breaking from unoriented D-brane instantons
We study the non-perturbative dynamics of an unoriented Z_5-quiver theory of
GUT kind with gauge group U(5) and chiral matter. At strong coupling the
non-perturbative dynamics is described in terms of set of baryon/meson
variables satisfying a quantum deformed constraint. We compute the effective
superpotential of the theory and show that it admits a line of supersymmetric
vacua and a phase where supersymmetry is dynamically broken via gaugino
condensation.Comment: 24 pages, 1 figur
Building a Better Racetrack
We find IIb compactifications on Calabi-Yau orientifolds in which all Kahler
moduli are stabilized, along lines suggested by Kachru, Kallosh, Linde and
Trivedi.Comment: 47 pages, 1 figure, harvmac (v2: added references, minor comments,
v3: improved discussion of metastability and explicit flux vacua
Orientifolds, Unoriented Instantons and Localization
We consider world-sheet instanton effects in N=1 string orientifolds of
noncompact toric Calabi-Yau threefolds. We show that unoriented closed string
topological amplitudes can be exactly computed using localization techniques
for holomorphic maps with involution. Our results are in precise agreement with
mirror symmetry and large N duality predictions.Comment: 25 pages, 10 figures, published version; v4: typos correcte
FCNC Processes from D-brane Instantons
Low string scale models might be tested at the LHC directly by their Regge
resonances. For such models it is important to investigate the constraints of
Standard Model precision measurements on the string scale. It is shown that
highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic
decays of the D0-meson provide non-negligible lower bounds on both the
perturbatively and surprisingly also non-perturbatively induced string theory
couplings. We present both the D-brane instanton formalism to compute such
amplitudes and discuss various possible scenarios and their constraints on the
string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file
adde
- …
