887 research outputs found
Inversion formulas for the broken-ray Radon transform
We consider the inverse problem of the broken ray transform (sometimes also
referred to as the V-line transform). Explicit image reconstruction formulas
are derived and tested numerically. The obtained formulas are generalizations
of the filtered backprojection formula of the conventional Radon transform. The
advantages of the broken ray transform include the possibility to reconstruct
the absorption and the scattering coefficients of the medium simultaneously and
the possibility to utilize scattered radiation which, in the case of the
conventional X-ray tomography, is typically discarded.Comment: To be submitted to Inverse Problem
XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme
Query evaluation in an XML database requires reconstructing XML subtrees
rooted at nodes found by an XML query. Since XML subtree reconstruction can be
expensive, one approach to improve query response time is to use reconstruction
views - materialized XML subtrees of an XML document, whose nodes are
frequently accessed by XML queries. For this approach to be efficient, the
principal requirement is a framework for view selection. In this work, we are
the first to formalize and study the problem of XML reconstruction view
selection. The input is a tree , in which every node has a size
and profit , and the size limitation . The target is to find a subset
of subtrees rooted at nodes respectively such that
, and is maximal.
Furthermore, there is no overlap between any two subtrees selected in the
solution. We prove that this problem is NP-hard and present a fully
polynomial-time approximation scheme (FPTAS) as a solution
Switchable lasing in coupled multimode microcavities
We propose the new concept of a switchable multimode microlaser. As a
generic, realistic model of a multimode microresonator a system of two coupled
defects in a two-dimensional photonic crystal is considered. We demonstrate
theoretically that lasing of the cavity into one selected resonator mode can be
caused by injecting an appropriate optical pulse at the onset of laser action
(injection seeding). Temporal mode-to-mode switching by re-seeding the cavity
after a short cool-down period is demonstrated by direct numerical solution. A
qualitative analytical explanation of the mode switching in terms of the laser
bistability is presented.Comment: Accepted for publication in Physical Review Letters. Published,
somewhat shortened versio
Microscopic derivation of the Jaynes-Cummings model with cavity losses
In this paper we provide a microscopic derivation of the master equation for
the Jaynes-Cummings model with cavity losses. We single out both the
differences with the phenomenological master equation used in the literature
and the approximations under which the phenomenological model correctly
describes the dynamics of the atom-cavity system. Some examples wherein the
phenomenological and the microscopic master equations give rise to different
predictions are discussed in detail.Comment: 9 pages, 3 figures New version with minor correction Accepted for
publication on Physical Review
Description of non-specific DNA-protein interaction and facilitated diffusion with a dynamical model
We propose a dynamical model for non-specific DNA-protein interaction, which
is based on the 'bead-spring' model previously developed by other groups, and
investigate its properties using Brownian Dynamics simulations. We show that
the model successfully reproduces some of the observed properties of real
systems and predictions of kinetic models. For example, sampling of the DNA
sequence by the protein proceeds via a succession of 3d motion in the solvent,
1d sliding along the sequence, short hops between neighboring sites, and
intersegmental transfers. Moreover, facilitated diffusion takes place in a
certain range of values of the protein effective charge, that is, the
combination of 1d sliding and 3d motion leads to faster DNA sampling than pure
3d motion. At last, the number of base pairs visited during a sliding event is
comparable to the values deduced from single-molecule experiments. We also
point out and discuss some discrepancies between the predictions of this model
and some recent experimental results as well as some hypotheses and predictions
of kinetic models
Qualitative aspects of the entanglement in the three-level model with photonic crystals
This communication is an enquiry into the circumstances under which
concurrence and phase entropy methods can give an answer to the question of
quantum entanglement in the composite state when the photonic band gap is
exhibited by the presence of photonic crystals in a three-level system. An
analytic approach is proposed for any three-level system in the presence of
photonic band gap. Using this analytic solution, we conclusively calculate the
concurrence and phase entropy, focusing particularly on the entanglement
phenomena. Specifically, we use concurrence as a measure of entanglement for
dipole emitters situated in the thin slab region between two semi-infinite
one-dimensionally periodic photonic crystals, a situation reminiscent of planar
cavity laser structures. One feature of the regime considered here is that
closed-form evaluation of the time evolution may be carried out in the presence
of the detuning and the photonic band gap, which provides insight into the
difference in the nature of the concurrence function for atom-field coupling,
mode frequency and different cavity parameters. We demonstrate how fluctuations
in the phase and number entropies effected by the presence of the
photonic-band-gap. The outcomes are illustrated with numerical simulations
applied to GaAs. Finally, we relate the obtained results to instances of any
three-level system for which the entanglement cost can be calculated. Potential
experimental observations in solid-state systems are discussed and found to be
promising.Comment: 28 pages, 10 figures: Accepted in Applied Physics B: Laser and Optic
Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.
The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met
Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In
Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and
in elastically (Raman) from natural targets of Au, Dy and In.15 new cross
sections were measured. Evidence is presented for a slight deformation in the
197Au nucleus, generally believed to be spherical. It is predicted, on the
basis of these measurements, that the Giant Dipole Resonance of Dy is very
similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in
In.Comment: 31 pages, 11 figure
Photon polarisation entanglement from distant dipole sources
It is commonly believed that photon polarisation entanglement can only be
obtained via pair creation within the same source or via postselective
measurements on photons that overlapped within their coherence time inside a
linear optics setup. In contrast to this, we show here that polarisation
entanglement can also be produced by distant single photon sources in free
space and without the photons ever having to meet, if the detection of a photon
does not reveal its origin -- the which way information. In the case of two
sources, the entanglement arises under the condition of two emissions in
certain spatial directions and leaves the dipoles in a maximally entangled
state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J.
Phys.
Spin relaxation in quantum dots with random spin-orbit coupling
We investigate the longitudinal spin relaxation arising due to spin-flip
transitions accompanied by phonon emission in quantum dots where the strength
of the Rashba spin-orbit coupling is a random function of the lateral
(in-plane) coordinate on the spatial nanoscale. In this case the Rashba
contribution to the spin-orbit coupling cannot be completely removed by
applying a uniform external bias across the quantum dot plane. Due to the
remnant random contribution, the spin relaxation rate cannot be decreased by
more than two orders of magnitude even when the external bias fully compensates
the regular part of the spin-orbit coupling.Comment: 13 pages, 4 figure
- …
