375 research outputs found
Phonon-assisted tunneling in interacting suspended single wall carbon nanotubes
Transport in suspended metallic single wall carbon nanotubes in the presence
of strong electron-electron interaction is investigated. We consider a tube of
finite length and discuss the effects of the coupling of the electrons to the
deformation potential associated to the acoustic stretching and breathing
modes. Treating the interacting electrons within the framework of the Luttinger
liquid model, the low-energy spectrum of the coupled electron-phonon system is
evaluated. The discreteness of the spectrum is reflected in the differential
conductance which, as a function of the applied bias voltage, exhibits three
distinct families of peaks. The height of the phonon-assisted peaks is very
sensitive to the parameters. The phonon peaks are best observed when the system
is close to the Wentzel-Bardeen singularity.Comment: 14 pages, 3 figure
A review of the decoherent histories approach to the arrival time problem in quantum theory
We review recent progress in understanding the arrival time problem in
quantum mechanics, from the point of view of the decoherent histories approach
to quantum theory. We begin by discussing the arrival time problem, focussing
in particular on the role of the probability current in the expected classical
solution. After a brief introduction to decoherent histories we review the use
of complex potentials in the construction of appropriate class operators. We
then discuss the arrival time problem for a particle coupled to an environment,
and review how the arrival time probability can be expressed in terms of a POVM
in this case. We turn finally to the question of decoherence of the
corresponding histories, and we show that this can be achieved for simple
states in the case of a free particle, and for general states for a particle
coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
Tracing CP-violation in Lepton Flavor Violating Muon Decays
Although the Lepton Flavor Violating (LFV) decay is
forbidden in the Standard Model (SM), it can take place within various theories
beyond the SM. If the branching ratio of this decay saturates its present bound
[{\it i.e.,} Br], the forthcoming
experiments can measure the branching ratio with high precision and
consequently yield information on the sources of LFV. In this letter, we show
that for polarized , by studying the angular distribution of the
transversely polarized positron and linearly polarized photon we can derive
information on the CP-violating sources beyond those in the SM. We also study
the angular distribution of the final particles in the decay where is defined to be the more energetic positron. We show
that transversely polarized can provide information on a certain
combination of the CP-violating phases of the underlying theory which would be
lost by averaging over the spin of .Comment: 6 pages, 2 figure
On Perturbations of Unitary Minimal Models by Boundary Condition Changing Operators
In this note we consider boundary perturbations in the A-Series unitary
minimal models by phi_{r,r+2} fields on superpositions of boundaries. In
particular, we consider perturbations by boundary condition changing operators.
Within conformal perturbation theory we explicitly map out the space of
perturbative renormalisation group flows for the example phi_{1,3} and find
that this sheds light on more general phi_{r,r+2} perturbations. Finally, we
find a simple diagrammatic representation for the space of flows from a single
Cardy boundary condition.Comment: 27 pages, 10 figure
Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets
At low energies, electrons in doped graphene sheets are described by a
massless Dirac fermion Hamiltonian. In this work we present a semi-analytical
expression for the dynamical density-density linear-response function of
noninteracting massless Dirac fermions (the so-called "Lindhard" function) at
finite temperature. This result is crucial to describe finite-temperature
screening of interacting massless Dirac fermions within the Random Phase
Approximation. In particular, we use it to make quantitative predictions for
the specific heat and the compressibility of doped graphene sheets. We find
that, at low temperatures, the specific heat has the usual normal-Fermi-liquid
linear-in-temperature behavior, with a slope that is solely controlled by the
renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE
Exact Floquet states of a driven condensate and their stabilities
We investigate the Gross-Pitaevskii equation for a classically chaotic
system, which describes an atomic Bose-Einstein condensate confined in an
optical lattice and driven by a spatiotemporal periodic laser field. It is
demonstrated that the exact Floquet states appear when the external
time-dependent potential is balanced by the nonlinear mean-field interaction.
The balance region of parameters is divided into a phase-continuing region and
a phase-jumping one. In the latter region, the Floquet states are
spatiotemporal vortices of nontrivial phase structures and zero-density cores.
Due to the velocity singularities of vortex cores and the blowing-up of
perturbed solutions, the spatiotemporal vortices are unstable periodic states
embedded in chaos. The stability and instability of these Floquet states are
numerically explored by the time evolution of fidelity between the exact and
numerical solutions. It is numerically illustrated that the stable Floquet
states could be prepared from the uniformly initial states by slow growth of
the external potential.Comment: 14 pages, 3 eps figures, final version accepted for publication in J.
Phys.
Supersymmetric Axion-Neutrino Merger
The recently proposed supersymmetric model of the neutrino mass matrix
is modified to merge with a previously proposed axionic solution of the strong
CP problem. The resulting model has only one input scale, i.e. that of
symmetry breaking, which determines both the seesaw neutrino mass scale and the
axion decay constant. It also solves the problem and conserves R parity
automatically.Comment: 7 pages, no figur
Detecting matter effects in long baseline experiments
Experiments strongly suggest that the flavour mixing responsible for the
atmospheric neutrino anomaly is very close to being maximal. Thus, it is of
great theoretical as well as experimental importance to measure any possible
deviation from maximality. In this context, we reexamine the effects of matter
interactions in long baseline neutrino oscillation experiments. Contrary to
popular belief, the muon neutrino survival probability is shown to be quite
sensitive to matter effects. Moreover, for moderately long baselines, the
difference between the survival probilities for and is
shown to be large and sensitive to the deviation of from
maximality. Performing a realistic analysis, we demonstrate that a muon-storage
ring -source alongwith an iron calorimeter detector can measure such
deviations. (Contrary to recent claims, this is not so for the NuMI--{\sc
minos} experiment.) We also discuss the possible correlation in measuring
and in such experiment.Comment: 18 pages, LaTe
Alternative approach to in the uMSSM
The gluino contributions to the Wilson coefficients for are calculated within the unconstrained MSSM. New stringent bounds on
the and mass insertion parameters are
obtained in the limit in which the SM and SUSY contributions to
approximately cancel. Such a cancellation can plausibly appear within several
classes of SUSY breaking models in which the trilinear couplings exhibit a
factorized structure proportional to the Yukawa matrices. Assuming this
cancellation takes place, we perform an analysis of the decay. We
show that in a supersymmetric world such an alternative is reasonable and it is
possible to saturate the branching ratio and produce a CP
asymmetry of up to 20%, from only the gluino contribution to
coefficients. Using photon polarization a LR asymmetry can be defined that in
principle allows for the and contributions to the decay to be disentangled. In this scenario no constraints on the ``sign
of '' can be derived.Comment: LaTeX2e, 23 pages, 7 ps figure, needs package epsfi
- …
