584 research outputs found
Vacuum structure and string tension in Yang-Mills dimeron ensembles
We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with
a statistical weight determined by the classical action and perform a
comprehensive analysis of their properties. In particular, we examine the
extent to which these ensembles capture topological and confinement properties
of the Yang-Mills vacuum. This further allows us to test the classic picture of
meron-induced quark confinement as triggered by dimeron dissociation. At small
bare couplings, spacial, topological-charge and color correlations among the
dimerons generate a short-range order which screens topological charges. With
increasing coupling this order weakens rapidly, however, in part because the
dimerons gradually dissociate into their meron constituents. Monitoring
confinement properties by evaluating Wilson-loop expectation values, we find
the growing disorder due to these progressively liberated merons to generate a
finite and (with the coupling) increasing string tension. The short-distance
behavior of the static quark-antiquark potential, on the other hand, is
dominated by small, "instanton-like" dimerons. String tension, action density
and topological susceptibility of the dimeron ensembles in the physical
coupling region turn out to be of the order of standard values. Hence the above
results demonstrate without reliance on weak-coupling or low-density
approximations that the dissociating dimeron component in the Yang-Mills vacuum
can indeed produce a meron-populated confining phase. The density of
coexisting, hardly dissociated and thus instanton-like dimerons seems to remain
large enough, on the other hand, to reproduce much of the additional
phenomenology successfully accounted for by non-confining instanton vacuum
models. Hence dimeron ensembles should provide an efficient basis for a rather
complete description of the Yang-Mills vacuum.Comment: 36 pages, 17 figure
Scalar Spectrum from a Dynamical Gravity/Gauge model
We show that a Dynamical AdS/QCD model is able to reproduce the linear Regge
trajectories for the light-flavor sector of mesons with high spin and also for
the scalar and pseudoscalar ones. In addition the model has confinement by the
Wilson loop criteria and a mass gap. We also calculate the decay amplitude of
scalars into two pion in good agreement to the available experimental data.Comment: Presented in the 4th International Workshop on Astronomy and
Relativistic Astrophysic
Holographic glueball structure
We derive and systematically analyze scalar glueball correlation functions in
both the hard-wall and dilaton soft-wall approximations to holographic QCD. The
dynamical content of the holographic correlators is uncovered by examining
their spectral density and by relating them to the operator product expansion,
a dilatational low-energy theorem and a recently suggested two-dimensional
power correction associated with the short-distance behavior of the heavy-quark
potential. This approach provides holographic estimates for the three
lowest-dimensional gluon condensates or alternatively their Wilson
coefficients, the two leading moments of the instanton size distribution in the
QCD vacuum and an effective UV gluon mass. A remarkable complementarity between
the nonperturbative physics of the hard- and soft-wall correlators emerges, and
their ability to describe detailed QCD results can be assessed quantitatively.
We further provide the first holographic estimates for the decay constants of
the 0++ glueball and its excitations. The hard-wall background turns out to
encode more of the relevant QCD physics, and its prediction f ~ 0.8-0.9 GeV for
the phenomenologically important ground state decay constant agrees inside
errors with recent QCD sum rule and lattice results.Comment: 25 pages, discussion extended to match the published version (up to
stylistic details), results and conclusions unchange
Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC
Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LH
Radiation zoning for vacuum equipment of the CERN Large Hadron Collider
Beam losses in high-energy particle accelerators are responsible for beam lifetime degradation. In the LHC beam losses will create a shower of particles while interacting with materials from the beam pipes and surroundings, resulting in a partial activation of material in the tunnel. Efforts have been made during the accelerator design to monitor and to reduce the activation induced by beam losses. Traceability for all vacuum components has been established providing a tool to follow-up individually each component or subcomponents installed in the tunnel, regardless of their future destination e.g. recycling or disposal. In the latter case, the history of vacuum components will allow calculating the beam-induced activation and permit comparisons with in-situ and ex-situ measurements. This zoning will also help to reduce collective and individual radiation doses to personnel during interventions. The paper presents the vacuum system layout and describes the LHC vacuum zoning and its implementation using an ORACLE© database
K* nucleon hyperon form factors and nucleon strangeness
A crucial input for recent meson hyperon cloud model estimates of the nucleon
matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*)
form factors which regularize some of the arising loops. Prompted by new and
forthcoming information on these form factors from hyperon-nucleon potential
models, we analyze the dependence of the loop model results for the
strange-quark observables on the NYK* form factors and couplings. We find, in
particular, that the now generally favored soft N-Lambda-K* form factors can
reduce the magnitude of the K* contributions in such models by more than an
order of magnitude, compared to previous results with hard form factors. We
also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the
momentum dependence of the strange vector form factor
Meson-Baryon-Baryon Vertex Function and the Ward-Takahashi Identity
Ohta proposed a solution for the well-known difficulty of satisfying the
Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (MBB)
when a dressed meson-baryon-baryon (MBB) vertex function is present. He
obtained a form for the MBB amplitude which contained, in addition to
the usual pole terms, longitudinal seagull terms which were determined entirely
by the MBB vertex function. He arrived at his result by using a Lagrangian
which yields the MBB vertex function at tree level. We show that such a
Lagrangian can be neither hermitian nor charge conjugation invariant. We have
been able to reproduce Ohta's result for the MBB amplitude using the
Ward-Takahashi identity and no other assumption, dynamical or otherwise, and
the most general form for the MBB and MBB vertices. However, contrary
to Ohta's finding, we find that the seagull terms are not robust. The seagull
terms extracted from the MBB vertex occur unchanged in tree graphs,
such as in an exchange current amplitude. But the seagull terms which appear in
a loop graph, as in the calculation of an electromagnetic form factor, are, in
general, different. The whole procedure says nothing about the transverse part
of the (MBB) vertex and its contributions to the amplitudes in
question.Comment: A 20 pages Latex file and 16 Postscript figures in an uuencoded
format. Use epsf.sty to include the figures into the Latex fil
The influence of the type of filling gas on the response of ionisation chambers to a mixed high-energy radiation field
Radiation protection dosimetry in radiation fields behind the shielding of high-energy accelerators such as CERN is a challenging task and the quantitative understanding of the detector response used for dosimetry is essential. Measurements with ionisation chambers are a standard method to determine absorbed dose (in the detector material). For applications in mixed radiation fields, ionisation chambers are often also calibrated in terms of ambient dose equivalent at conventional reference radiation fields. The response of a given ionisation chamber to the various particle types of a complex high-energy radiation field in terms of ambient dose equivalent depends of course on the materials used for the construction and the chamber gas used. This paper will present results of computational studies simulating the exposure of high-pressure ionisation chambers filled with different types of gases to the radiation field at CERN's CERN-EU high-energy reference field facility. At this facility complex high-energy radiation fields, similar to those produced by cosmic rays at flight altitudes, are produced. The particle fluence and spectra calculated with FLUKA Monte Carlo simulations have been benchmarked in several measurements. The results can be used to optimise the response of ionisation chambers for the measurement of ambient dose equivalent in high-energy mixed radiation field
Measurements of the electric quadrupole moment of Nb and Zr isotopes with modulated adiabatic fast passage after recoil implantation into hcp Co
Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments
The strange properties of the nucleon are investigated within the framework
of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying
the symmetry conserving SU(3) quantization. We present the form factors
, and the electric and magnetic strange form
factors incorporating pion and kaon asymptotics. The results
show a fairly good agreement with the recent experimental data from the SAMPLE
and HAPPEX collaborations. We also present predictions for future measurements
including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed.
Accepted for publication in Phys.Rev.
- …
