844 research outputs found
Boosting the MHC class II-restricted tumor antigen presentation to CD4+ T helper cells: A critical issue for triggering protective immunity and re-orienting the tumor microenvironment toward an anti-tumor state
6noopenAlthough the existence of an immune response against tumor cells is well documented, the fact that tumors take off in cancer patients indicates that neoplastic cells can circumvent this response. Over the years many investigators have described strategies to rescue the anti-tumor immune response with the aim of creating specific and long-lasting protection against the disease. When exported to human clinical settings, these strategies have revealed in most cases a very limited, if any, positive outcome. We believe that the failure is mostly due to the inadequate triggering of the CD4+ T helper (TH) cell arm of the adaptive immunity, as TH cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells. In this review, we focus on novel strategies that by stimulating MHC class II-restricted activation of TH cells generate a specific and persistent adaptive immunity against the tumor. This point is of critical importance for both preventive and therapeutic anti-tumor vaccination protocols, because adaptive immunity with its capacity to produce specific, long-lasting protection and memory responses is indeed the final goal of vaccination. We will discuss data from our as well as other laboratories which strongly suggest that triggering a specific and persistent anti-tumor CD4+ TH cell response stably modify not only the tumor microenvironment but also tumor-dependent extratumor microenvironments by eliminating and/or reducing the blood-derived tumor infiltrating cells that may have a pro-tumor growth function such as regulatory CD4+/CD25+ T cells and myeloid-derived-suppressor cells. Within this frame, therefore, we believe that the establishment of a pro-tumor environment is not the cause but simply the consequence of the tumor strategy to primarily counteract components of the adaptive cellular immunity, particularly TH lymphocytes.openAccolla, R.S.; Lombardo, L.; Abdallah, R.; Raval, G.; Forlani, G.; Tosi, G.Accolla, Roberto; Lombardo, L.; Abdallah, R.; Raval, G.; Forlani, Greta; Tosi, Giovann
Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model.
Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT
Septate uterus: nosographic overview and endoscopic treatment
To comment on the prevalence, diagnosis, and treatment of the septate uterus, with special reference to hysteroscopic metroplasty and its effect on reproductive outcome, we searched publications in PubMed and Embase. Original articles, meta-analysis, reviews, and opinion articles were selected. The studies suggest that the prevalence of the septate uterus is increased in women with repeated pregnancy loss and infertility. Reliable diagnosis depends on accurate assessment of the uterine fundal contour and uterine cavity by means of magnetic resonance and three-dimensional ultrasound. Pertinent published data comparing pregnancy outcome before and after hysteroscopic metroplasty indicated a marked improvement after surgery. Magnetic resonance and three-dimensional ultrasound represent the gold standard for diagnosis of septate uterus. Hysteroscopic metroplasty with its simplicity, minimal postoperative sequelae, and improved reproductive outcome is the gold standard for treatment, not only in patients with recurrent pregnancy loss and premature labor but also in patients with infertility, especially if in vitro fertilization is being contemplated
The Levels of DAHP Synthase, the First Enzyme of the Shikimate Pathway, Are Related to Free Aromatic Amino Acids and Glutamine Content in Nicotiana plumbaginifolia Cell Cultures
Aromatic amino acid homeostasis was investigated in cell suspension cultures of Nicotiana plumbaginifolia and was related to the activity of the first enzyme in aromatic biosynthesis, 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase. An inverse relationship was found between the intracellular content of free phenylalanine, tyrosine and tryptophan and enzyme specific activity levels, suggesting the occurrence of end-product control mechanisms. Two DAHP synthase isogenes are present in wild tobacco that showed a different expression pattern during the culture growth cycle. Intracellular levels of aromatic amino acids were increased or decreased by adding the culture medium with phenylalanine, tyrosine and tryptophan, or with sublethal doses of the shikimate pathway inhibitor glyphosate, respectively. As a consequence, enzyme levels varied in the opposite direction. The concomitant exogenous supply of glutamine further reduced enzyme activity in mid-log cells, suggesting induction by both aromatic amino acid depletion and nitrogen starvation
Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics
The goal was to investigate whether the diverse glucosinolate (Gl) profiles described for different Arabidopsis thaliana (L.) Heynh. ecotypes are at least partially shaped by the kinetic properties of sulfotransferases (SOTs) (EC 2.8.2.-) catalyzing the final step in Gl core structure biosynthesis. This study focuses on only one of the three SOTs that contribute to Gl biosynthesis. Homologues of AtSOT18 proteins were characterized, which was inspired by earlier findings on SOTs from ecotypes Col-0 and C24 differing in two amino acids (aa) and specific enzyme activities. Could there be a correlation of AtSOT18 enzyme activities and differences in Gl profiles between the ecotypes? SOT18 sequences from eight Arabidopsis ecotypes with highly diverse Gl patterns differed in two aa at various positions in the protein sequence. The SOT18 sequence from Col-0 showed the highest similarity to the largest number of other sequences in the alignment. The small differences in the primary sequence lead to important structural changes in secondary and tertiary structure that might be the key of different kinetic activities towards a broad range of substrates. All recombinant AtSOT18 proteins showed low substrate specificity with an indolic Gl, while the specificity for aliphatic substrates varied. There is no correlation in the kinetic behavior with the major ds-Gl contents or with the ratio of C-3/C-4 ds-Gl in the respective ecotype. Therefore, is it unlikely that ds-Gl AtSOT18 proteins play a major role in shaping the Gl profile in Arabidopsis
MHC class II transactivator CIITA inhibits Tax-2-mediated HTLV-2 LTR transactivation and viral replication by binding to, and affecting Tax-2 intracellular localization
Molecular and cellular correlates of the CIITA-mediated inhibition of HTLV-2 Tax-2 transactivator function resulting in loss of viral replication
<p>Abstract</p> <p>Background</p> <p>MHC class II transactivator CIITA inhibits the function of HTLV-2 Tax-2 viral transactivator and, consequently, the replication of the virus in infected cells. Moreover overexpression of the nuclear factor NF-YB, that cooperates with CIITA for the expression of MHC class II genes, results also in inhibition of Tax-2 transactivation. The purpose of this investigation was to assess the cellular and molecular basis of the CIITA-mediated inhibition on Tax-2, and the relative role of NF-YB in this phenomenon.</p> <p>Methods</p> <p>By co-immunoprecipitation of lysates from 293T cells cotransfected with CIITA or fragments of it, and Tax-2 it was assessed whether the two factors interact <it>in vivo</it>. A similar approach was used to assess Tax-2-NF-YB interaction. In parallel, deletion fragments of CIITA were tested for the inhibition of Tax-2-dependent HTLV-2 LTR-luciferase transactivation. Subcellular localization of CIITA and Tax-2 was investigated by immunofluorescence and confocal microscopy.</p> <p>Results</p> <p>CIITA and Tax-2 interact <it>in vivo </it>through at least two independent regions, at the 1-252 N-term and at the 410-1130 C-term, respectively. Interestingly only the 1-252 N-term region mediates Tax-2 functional inhibition. CIITA and Tax-2 are localized both in the cytoplasm and in the nucleus, when separately expressed. Instead, when coexpressed, most of Tax-2 colocalize with CIITA in cytoplasm and around the nuclear membrane. The Tax-2 minor remaining nuclear portion also co-localizes with CIITA. Interestingly, when CIITA nucleus-cytoplasm shuttling is blocked by leptomycin B treatment, most of the Tax-2 molecules are also blocked and co-localize with CIITA in the nucleus, suggesting that CIITA-Tax-2 binding does not preclude Tax-2 entry into the nucleus.</p> <p>Finally, the nuclear factor NF-YB, also strongly binds to Tax-2. Notably, although endogenous NF-YB does not inhibit Tax-2-dependent HTLV-2 LTR transactivation, it still binds to Tax-2, and in presence of CIITA, this binding seems to increase.</p> <p>Conclusions</p> <p>These results strongly suggest that CIITA inhibit Tax-2 by binding the viral transactivator both directly or through a tripartite interaction with NF-YB in. CIITA is therefore a viral restriction factor for HTLV-2 and this open the possibility to control HTLV-2 viral replication and spreading by the controlled induction of CIITA in infected cells</p
HEBE, a novel positive regulator of senescence in Solanum lycopersicum
Leaf senescence and plant aging are traits of great interest for breeders. Senescing cells undergo important physiological and biochemical changes, while cellular structures such as chloroplasts are degraded with dramatic metabolic consequences for the whole plant. The possibility of prolonging the photosynthetic ability of leaves could positively impact the plant\u2019s life span with benefits for biomass production and metabolite accumulation; plants with these characteristics display a stay-green phenotype. A group of plant transcription factors known as NAC play a pivotal role in controlling senescence: here we describe the involvement of the tomato NAC transcription factor Solyc12g036480, which transcript is present in leaves and floral buds. Since its silencing delays leaf senescence and prevents plants from ageing, we renamed Solyc12g0364 H\u1e16B\u112, for the Greek goddess of youth. In this manuscript we describe how HEB downregulation negatively affects the progression of senescence, resulting in changes in transcription of senescence-promoting genes, as well as the activity of enzymes involved in chlorophyll degradation, thereby explaining the stay-green phenotype
Both Light Stimuli and Predation Risk Affect the Adult Behavior of a Stygobiont Crustacean
Stygobiont species show common, typical traits derived from their adaptation to subterranean life. Due to the general absence of light in cave environments, the majority of them are eyeless. Although the absence of eyes generally does not allow them to perceive luminous stimuli, some stygobionts still present phototaxis. Previous studies determined that different species of the eyeless amphipod crustaceans of the genus Niphargus are able to react to light; this has been interpreted as an adaptation to avoid dangerous surface habitats, even if recent studies suggest that this could also be an adaptation to exploit them when a situation is less dangerous (i.e., during the night). Niphargus thuringius is a stygobiont amphipod that can also be observed in spring environments despite possessing all the main morphological features of subterranean organisms, such as depigmentation and a lack of eyes. In the present study, we test how the species respond to light stimuli according to the light cycle and predation risk experienced during a conditioning period. We assessed the reactions to light stimuli of adult individuals of N. thuringius after 30 days of rearing in microcosms with different conditions of light occurrence (total darkness or a light/darkness daily cycle) and predation risk (without predators, with one predator, and with two predators). Both light stimuli during the test and rearing conditions affected the behavior of Niphargus thuringius. With light stimuli, individuals presented a strong photophobic response. Moreover, individuals reared in conditions of high predation risk preferred a more sheltered environment during behavioral tests than individuals reared in safe conditions. Our results add a new species to those of stygobiont amphipods known to display negative phototaxis, confirming that this pattern is widespread and conserved in the field. N. thuringius could be a good candidate model to perform further studies aiming to assess if differences occur between spring populations and populations present in deeper groundwater
Reply to the Letter to the Editor: \u201cImportance of nasal secretions in the evaluation of mucosal immunity elicited by mRNA BNT162b2 COVID-19 vaccine\u201d by Francavilla B et al.: Lack of a strong oral mucosal immune response: rethinking the route of COVID-19 vaccine boost administration?
- …
