4,634 research outputs found
Scheme Dependence at Small x
We discuss the evolution of F_2^p at small x, emphasizing the uncertainties
related to expansion, fitting, renormalization and factorization scheme
dependence. We find that perturbative extrapolation from the measured region
down to smaller x and lower Q^2 may become strongly scheme dependent.Comment: 8 pages, LaTeX with epsfig, 2 uuencoded figure
BFKL at NNLO
We present a recent determination of an approximate expression for the
O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation. This
includes all collinear and anticollinear singular contributions and is derived
using duality relations between the GLAP and BFKL kernels.Comment: 8 pages. Talk presented at 12th International Conference on Elastic
and Diffractive Scattering: Forward Physics and QCD, Hamburg, DESY, Germany,
21-25 May 200
Anomaly-Induced Magnetic Screening in 2+1 dimensional QED at Finite Density
We show that in 2+1 dimensional Quantum Electrodynamics an external magnetic
field applied to a finite density of massless fermions is screened, due to a
-dimensional realization of the underlying -dimensional axial anomaly
of the space components of the electric current. This is shown to imply
screening of the magnetic field, i.e., the Meissner effect. We discuss the
physical implications of this result.Comment: 8 pages, DFTT-93-10 [ Eq.(15) and (16) were scrambled in previous
version
The sigma term and the quark number operator in QCD
We discuss the relationship of the forward matrix element of the operator
, related to the so-called sigma term, to the quark number. We
show that in the naive quark model in the canonical formalism these quantities
coincide in the limit of small average quark momenta. In the QCD parton model
defined through light-front quantization this result is preserved at leading
perturbative order but it receives radiative corrections. We analyze the
theoretical and phenomenological consequences of this result, which provides a
bridge between a current algebra quantity, the sigma term, and a deep-inelastic
quantity, the parton number.Comment: 30 pages, 1 figure, DFTT-92-6 (April 1993
Small Angle Polarization in High Energy P--P Scattering Through Nonperturbative Chiral Symmetry Breaking
We show that a large anomalous contribution due to nonperturbative
instanton-like gluonic field configurations to the axial charge of the proton
implies high-energy spin effects in elastic scattering. This is the same
mechanism which is responsible for anomalous baryon number violation at high
energy in the standard model. We compute the proton polarization due to these
effects and we show that it is proportional to the center-of-mass scattering
angle with a universal (energy-independent) slope of order unity.Comment: (13 pages, 2 figures
Neural Network Parametrization of Deep-Inelastic Structure Functions
We construct a parametrization of deep-inelastic structure functions which
retains information on experimental errors and correlations, and which does not
introduce any theoretical bias while interpolating between existing data
points. We generate a Monte Carlo sample of pseudo-data configurations and we
train an ensemble of neural networks on them. This effectively provides us with
a probability measure in the space of structure functions, within the whole
kinematic region where data are available. This measure can then be used to
determine the value of the structure function, its error, point-to-point
correlations and generally the value and uncertainty of any function of the
structure function itself. We apply this technique to the determination of the
structure function F_2 of the proton and deuteron, and a precision
determination of the isotriplet combination F_2[p-d]. We discuss in detail
these results, check their stability and accuracy, and make them available in
various formats for applications.Comment: Latex, 43 pages, 22 figures. (v2) Final version, published in JHEP;
Sect.5.2 and Fig.9 improved, a few typos corrected and other minor
improvements. (v3) Some inconsequential typos in Tab.1 and Tab 5 corrected.
Neural parametrization available at http://sophia.ecm.ub.es/f2neura
Field-induced Orbital Patterns in Ferromagnetic Layered Ruthenates
We study the evolution of orbital patterns in ferromagnetic layered
ruthenates due to the competition of Coulomb interactions, compressive c axis
and orthorhombic distortions in the presence of a polarizing orbital field
coupled to the angular momentum. By means of the exact diagonalization on a 2x2
cluster and a cluster embedded analysis where inter-plaquette interaction is
treated on mean field level, we determine the ground-state phase diagram.
Specifically, we demonstrate that, via the activation of two or three of t_2g
local orbital configurations, an external field applied along different
symmetry directions can lead to inequivalent orbital correlated states.
Starting from an antiferro-orbital pattern, for the easy axis case an orbital
ordered phase is induced, having strong next nearest neighbors ferro-orbital
correlations. Otherwise, a field applied along the hard axis leads a reduction
of local orbital moment in a way to suppress the orbital order.Comment: 11 page
- …
