3,304 research outputs found
Astronomical spectrograph calibration with broad-spectrum frequency combs
Broadband femtosecond-laser frequency combs are filtered to
spectrographically resolvable frequency-mode spacing, and the limitations of
using cavities for spectral filtering are considered. Data and theory are used
to show implications to spectrographic calibration of high-resolution,
astronomical spectrometers
Theoretical models of planetary system formation: mass vs semi-major axis
Planet formation models have been developed during the last years in order to
try to reproduce the observations of both the solar system, and the extrasolar
planets. Some of these models have partially succeeded, focussing however on
massive planets, and for the sake of simplicity excluding planets belonging to
planetary systems. However, more and more planets are now found in planetary
systems. This tendency, which is a result of both radial velocity, transit and
direct imaging surveys, seems to be even more pronounced for low mass planets.
These new observations require the improvement of planet formation models,
including new physics, and considering the formation of systems. In a recent
series of papers, we have presented some improvements in the physics of our
models, focussing in particular on the internal structure of forming planets,
and on the computation of the excitation state of planetesimals, and their
resulting accretion rate. In this paper, we focus on the concurrent effect of
the formation of more than one planet in the same protoplanetary disc, and show
the effect, in terms of global architecture and composition of this
multiplicity. We use a N-body calculation including collision detection to
compute the orbital evolution of a planetary system. Moreover, we describe the
effect of competition for accretion of gas and solids, as well as the effect of
gravitational interactions between planets. We show that the masses and
semi-major axis of planets are modified by both the effect of competition and
gravitational interactions. We also present the effect of the assumed number of
forming planets in the same system (a free parameter of the model), as well as
the effect of the inclination and eccentricity damping.Comment: accepted in Astronomy and Astrophysic
On the electromagnetic form factors of the proton from generalized Skyrme models
We compare the prediction of Skyrme-like effective Lagrangians with data for
electromagnetic form factors of proton and consider the possibility of fixing
the parameters of these higher-order Lagrangians. Our results indicate that one
or two-parameter models can lead to better agreement with the data but more
accurate determination of the effective Lagragian faces theoretical
uncertainties.Comment: 8 pages, 2 figures, revte
Analysis of Three-Dimensional Protein Images
A fundamental goal of research in molecular biology is to understand protein
structure. Protein crystallography is currently the most successful method for
determining the three-dimensional (3D) conformation of a protein, yet it
remains labor intensive and relies on an expert's ability to derive and
evaluate a protein scene model. In this paper, the problem of protein structure
determination is formulated as an exercise in scene analysis. A computational
methodology is presented in which a 3D image of a protein is segmented into a
graph of critical points. Bayesian and certainty factor approaches are
described and used to analyze critical point graphs and identify meaningful
substructures, such as alpha-helices and beta-sheets. Results of applying the
methodologies to protein images at low and medium resolution are reported. The
research is related to approaches to representation, segmentation and
classification in vision, as well as to top-down approaches to protein
structure prediction.Comment: See http://www.jair.org/ for any accompanying file
Optical Lattice Induced Light Shifts in an Yb Atomic Clock
We present an experimental study of the lattice induced light shifts on the
1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The
``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394
799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz
on the 518 THz clock transition. Also investigated were the hyperpolarizability
shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2
two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By
tuning the lattice frequency over the two-photon resonances and measuring the
corresponding clock transition shifts, the hyperpolarizability shift was
estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the
magic wavelength. In addition, we have confirmed that a circularly polarized
lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate
that the differential polarizability and hyperpolarizability frequency shift
uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR
Generation of Ultrastable Microwaves via Optical Frequency Division
There has been increased interest in the use and manipulation of optical
fields to address challenging problems that have traditionally been approached
with microwave electronics. Some examples that benefit from the low
transmission loss, agile modulation and large bandwidths accessible with
coherent optical systems include signal distribution, arbitrary waveform
generation, and novel imaging. We extend these advantages to demonstrate a
microwave generator based on a high-Q optical resonator and a frequency comb
functioning as an optical-to-microwave divider. This provides a 10 GHz
electrical signal with fractional frequency instability <8e-16 at 1 s, a value
comparable to that produced by the best microwave oscillators, but without the
need for cryogenic temperatures. Such a low-noise source can benefit radar
systems, improve the bandwidth and resolution of communications and digital
sampling systems, and be valuable for large baseline interferometry, precision
spectroscopy and the realization of atomic time
Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein Condensates
We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms
confined in an optical trap. We determine the spin mixing time to be typically
less than 600 ms and observe spin population oscillations. The equilibrium spin
configuration in the F=1 manifold is measured for different magnetic fields and
found to show ferromagnetic behavior for low field gradients. An F=2 condensate
is created by microwave excitation from F=1 manifold, and this spin-2
condensate is observed to decay exponentially with time constant 250 ms.
Despite the short lifetime in the F=2 manifold, spin mixing of the condensate
is observed within 50 ms.Comment: 4 pages, 6 figure
Fermionic Symmetries: Extension of the two to one Relationship Between the Spectra of Even-Even and Neighbouring Odd mass Nuclei
In the single j shell there is a two to one relationship between the spectra
of certain even-even and neighbouring odd mass nuclei e.g. the calculated
energy levels of J=0^+ states in ^{44}Ti are at twice the energies of
corresponding levels in ^{43}Ti(^{43}Sc) with J=j=7/2. Here an approximate
extension of the relationship is made by adopting a truncated seniority scheme
i.e. for ^{46}Ti and ^{45}Sc we get the relationship if we do not allow the
seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we
get very close to the two to one relationship if seniority v=4 states are
admixed perturbatively. In addition, it is shown that the higher isospin states
do not contain seniority 4 admixtures.Comment: 11 pages, RevTex file and no figures, typos added, references changed
and changed content
Frequency evaluation of the doubly forbidden transition in bosonic Yb
We report an uncertainty evaluation of an optical lattice clock based on the
transition in the bosonic isotope Yb by use
of magnetically induced spectroscopy. The absolute frequency of the
transition has been determined through comparisons
with optical and microwave standards at NIST. The weighted mean of the
evaluations is (Yb)=518 294 025 309 217.8(0.9) Hz. The uncertainty
due to systematic effects has been reduced to less than 0.8 Hz, which
represents in fractional frequency.Comment: 4 pages, 3 figure -Submitted to PRA Rapid Communication
- …
