13 research outputs found
Evaluation of a screening program for iron overload andHFEmutations in 50,493 blood donors
Early detection of individuals with hereditary hemochromatosis (HH) is important to manage iron levels and prevent future organ damage. Although theHFEmutations that cause most cases of HH have been identified, their geographic distribution is highly variable, and their contribution to iron overload is not fully understood. All new registered blood donors at the Sahlgrenska University hospital between 1998 and 2015 were included in the study. Donors with signs of iron overload at baseline and subsequent follow-up testing were recommended genotyping of theHFEgene. Of the 50,493 donors that were included in the study, 950 (1.9%) had signs of iron overload on both test occasions. Of the 840 donors with iron overload that performedHFEgenotyping, 117 were homozygous for C282Y, and 97 were compound heterozygotes. The prevalence of C282Y homozygosity was 0.23%. Iron overload screening effectively detects individuals at risk of carrying the C282Y mutation of theHFEgene and enables early treatment to prevent HH complications
MOLECULAR AND PHARMACOLOGICAL CHARACTERISATION OF THE MSH-R ALLELES IN SWISS CATTLE BREEDS
Signature of Balancing Selection at the MC1R Gene in Kunming Dog Populations
Coat color in dog breeds is an excellent character for revealing the power of artificial selection, as it is extremely diverse and likely the result of recent domestication. Coat color is generated by melanocytes, which synthesize pheomelanin (a red or yellow pigment) or eumelanin (a black or brown pigment) through the pigment type-switching pathway, and is regulated by three genes in dogs: MC1R (melanocortin receptor 1), CBD103 (β-defensin 103), and ASIP (agouti-signaling protein precursor). The genotypes of these three gene loci in dog breeds are associated with coat color pattern. Here, we resequenced these three gene loci in two Kunming dog populations and analyzed these sequences using population genetic approaches to identify evolutionary patterns that have occurred at these loci during the recent domestication and breeding of the Kunming dog. The analysis showed that MC1R undergoes balancing selection in both Kunming dog populations, and that the Fst value for MC1R indicates significant genetic differentiation across the two populations. In contrast, similar results were not observed for CBD103 or ASIP. These results suggest that high heterozygosity and allelic differences at the MC1R locus may explain both the mixed color coat, of yellow and black, and the difference in coat colors in both Kunming dog populations
