1,067 research outputs found
Augmenting graphs to minimize the diameter
We study the problem of augmenting a weighted graph by inserting edges of
bounded total cost while minimizing the diameter of the augmented graph. Our
main result is an FPT 4-approximation algorithm for the problem.Comment: 15 pages, 3 figure
Speeding up shortest path algorithms
Given an arbitrary, non-negatively weighted, directed graph we
present an algorithm that computes all pairs shortest paths in time
, where is the number of
different edges contained in shortest paths and is a running
time of an algorithm to solve a single-source shortest path problem (SSSP).
This is a substantial improvement over a trivial times application of
that runs in . In our algorithm we use
as a black box and hence any improvement on results also in improvement
of our algorithm.
Furthermore, a combination of our method, Johnson's reweighting technique and
topological sorting results in an all-pairs
shortest path algorithm for arbitrarily-weighted directed acyclic graphs.
In addition, we also point out a connection between the complexity of a
certain sorting problem defined on shortest paths and SSSP.Comment: 10 page
Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs
Let be a graph where each vertex is associated with a label. A
Vertex-Labeled Approximate Distance Oracle is a data structure that, given a
vertex and a label , returns a -approximation of
the distance from to the closest vertex with label in . Such
an oracle is dynamic if it also supports label changes. In this paper we
present three different dynamic approximate vertex-labeled distance oracles for
planar graphs, all with polylogarithmic query and update times, and nearly
linear space requirements
Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search
The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a
general technique for constructing a data structure to answer approximate near
neighbor queries by using a distribution over locality-sensitive
hash functions that partition space. For a collection of points, after
preprocessing, the query time is dominated by evaluations
of hash functions from and hash table lookups and
distance computations where is determined by the
locality-sensitivity properties of . It follows from a recent
result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive
hash functions can be reduced to , leaving the query time to be
dominated by distance computations and
additional word-RAM operations. We state this result as a general framework and
provide a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework, making it a viable
replacement in practice. Using ideas from another locality-sensitive hashing
framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of
additional word-RAM operations to .Comment: 15 pages, 3 figure
A simpler and more efficient algorithm for the next-to-shortest path problem
Given an undirected graph with positive edge lengths and two
vertices and , the next-to-shortest path problem is to find an -path
which length is minimum amongst all -paths strictly longer than the
shortest path length. In this paper we show that the problem can be solved in
linear time if the distances from and to all other vertices are given.
Particularly our new algorithm runs in time for general
graphs, which improves the previous result of time for sparse
graphs, and takes only linear time for unweighted graphs, planar graphs, and
graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201
Compressed Subsequence Matching and Packed Tree Coloring
We present a new algorithm for subsequence matching in grammar compressed
strings. Given a grammar of size compressing a string of size and a
pattern string of size over an alphabet of size , our algorithm
uses space and or time. Here
is the word size and is the number of occurrences of the pattern. Our
algorithm uses less space than previous algorithms and is also faster for
occurrences. The algorithm uses a new data structure
that allows us to efficiently find the next occurrence of a given character
after a given position in a compressed string. This data structure in turn is
based on a new data structure for the tree color problem, where the node colors
are packed in bit strings.Comment: To appear at CPM '1
Dynamic Range Majority Data Structures
Given a set of coloured points on the real line, we study the problem of
answering range -majority (or "heavy hitter") queries on . More
specifically, for a query range , we want to return each colour that is
assigned to more than an -fraction of the points contained in . We
present a new data structure for answering range -majority queries on a
dynamic set of points, where . Our data structure uses O(n)
space, supports queries in time, and updates in amortized time. If the coordinates of the points are integers,
then the query time can be improved to . For constant values of , this improved query
time matches an existing lower bound, for any data structure with
polylogarithmic update time. We also generalize our data structure to handle
sets of points in d-dimensions, for , as well as dynamic arrays, in
which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201
Cross-Document Pattern Matching
We study a new variant of the string matching problem called cross-document
string matching, which is the problem of indexing a collection of documents to
support an efficient search for a pattern in a selected document, where the
pattern itself is a substring of another document. Several variants of this
problem are considered, and efficient linear-space solutions are proposed with
query time bounds that either do not depend at all on the pattern size or
depend on it in a very limited way (doubly logarithmic). As a side result, we
propose an improved solution to the weighted level ancestor problem
Dynamic Set Intersection
Consider the problem of maintaining a family of dynamic sets subject to
insertions, deletions, and set-intersection reporting queries: given , report every member of in any order. We show that in the word
RAM model, where is the word size, given a cap on the maximum size of
any set, we can support set intersection queries in
expected time, and updates in expected time. Using this algorithm
we can list all triangles of a graph in
expected time, where and
is the arboricity of . This improves a 30-year old triangle enumeration
algorithm of Chiba and Nishizeki running in time.
We provide an incremental data structure on that supports intersection
{\em witness} queries, where we only need to find {\em one} .
Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected
time, where . Finally, we provide time/space tradeoffs for
the fully dynamic set intersection reporting problem. Using words of space,
each update costs expected time, each reporting query
costs expected time where
is the size of the output, and each witness query costs expected time.Comment: Accepted to WADS 201
The impact of emotional well-being on long-term recovery and survival in physical illness: a meta-analysis
This meta-analysis synthesized studies on emotional well-being as predictor of the prognosis of physical illness, while in addition evaluating the impact of putative moderators, namely constructs of well-being, health-related outcome, year of publication, follow-up time and methodological quality of the included studies. The search in reference lists and electronic databases (Medline and PsycInfo) identified 17 eligible studies examining the impact of general well-being, positive affect and life satisfaction on recovery and survival in physically ill patients. Meta-analytically combining these studies revealed a Likelihood Ratio of 1.14, indicating a small but significant effect. Higher levels of emotional well-being are beneficial for recovery and survival in physically ill patients. The findings show that emotional well-being predicts long-term prognosis of physical illness. This suggests that enhancement of emotional well-being may improve the prognosis of physical illness, which should be investigated by future research
- …
