1,067 research outputs found

    Augmenting graphs to minimize the diameter

    Full text link
    We study the problem of augmenting a weighted graph by inserting edges of bounded total cost while minimizing the diameter of the augmented graph. Our main result is an FPT 4-approximation algorithm for the problem.Comment: 15 pages, 3 figure

    Speeding up shortest path algorithms

    Full text link
    Given an arbitrary, non-negatively weighted, directed graph G=(V,E)G=(V,E) we present an algorithm that computes all pairs shortest paths in time O(mn+mlgn+nTψ(m,n))\mathcal{O}(m^* n + m \lg n + nT_\psi(m^*, n)), where mm^* is the number of different edges contained in shortest paths and Tψ(m,n)T_\psi(m^*, n) is a running time of an algorithm to solve a single-source shortest path problem (SSSP). This is a substantial improvement over a trivial nn times application of ψ\psi that runs in O(nTψ(m,n))\mathcal{O}(nT_\psi(m,n)). In our algorithm we use ψ\psi as a black box and hence any improvement on ψ\psi results also in improvement of our algorithm. Furthermore, a combination of our method, Johnson's reweighting technique and topological sorting results in an O(mn+mlgn)\mathcal{O}(m^*n + m \lg n) all-pairs shortest path algorithm for arbitrarily-weighted directed acyclic graphs. In addition, we also point out a connection between the complexity of a certain sorting problem defined on shortest paths and SSSP.Comment: 10 page

    Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs

    Full text link
    Let GG be a graph where each vertex is associated with a label. A Vertex-Labeled Approximate Distance Oracle is a data structure that, given a vertex vv and a label λ\lambda, returns a (1+ε)(1+\varepsilon)-approximation of the distance from vv to the closest vertex with label λ\lambda in GG. Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements

    Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search

    Full text link
    The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a general technique for constructing a data structure to answer approximate near neighbor queries by using a distribution H\mathcal{H} over locality-sensitive hash functions that partition space. For a collection of nn points, after preprocessing, the query time is dominated by O(nρlogn)O(n^{\rho} \log n) evaluations of hash functions from H\mathcal{H} and O(nρ)O(n^{\rho}) hash table lookups and distance computations where ρ(0,1)\rho \in (0,1) is determined by the locality-sensitivity properties of H\mathcal{H}. It follows from a recent result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive hash functions can be reduced to O(log2n)O(\log^2 n), leaving the query time to be dominated by O(nρ)O(n^{\rho}) distance computations and O(nρlogn)O(n^{\rho} \log n) additional word-RAM operations. We state this result as a general framework and provide a simpler analysis showing that the number of lookups and distance computations closely match the Indyk-Motwani framework, making it a viable replacement in practice. Using ideas from another locality-sensitive hashing framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of additional word-RAM operations to O(nρ)O(n^\rho).Comment: 15 pages, 3 figure

    A simpler and more efficient algorithm for the next-to-shortest path problem

    Full text link
    Given an undirected graph G=(V,E)G=(V,E) with positive edge lengths and two vertices ss and tt, the next-to-shortest path problem is to find an stst-path which length is minimum amongst all stst-paths strictly longer than the shortest path length. In this paper we show that the problem can be solved in linear time if the distances from ss and tt to all other vertices are given. Particularly our new algorithm runs in O(VlogV+E)O(|V|\log |V|+|E|) time for general graphs, which improves the previous result of O(V2)O(|V|^2) time for sparse graphs, and takes only linear time for unweighted graphs, planar graphs, and graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201

    Compressed Subsequence Matching and Packed Tree Coloring

    Get PDF
    We present a new algorithm for subsequence matching in grammar compressed strings. Given a grammar of size nn compressing a string of size NN and a pattern string of size mm over an alphabet of size σ\sigma, our algorithm uses O(n+nσw)O(n+\frac{n\sigma}{w}) space and O(n+nσw+mlogNlogwocc)O(n+\frac{n\sigma}{w}+m\log N\log w\cdot occ) or O(n+nσwlogw+mlogNocc)O(n+\frac{n\sigma}{w}\log w+m\log N\cdot occ) time. Here ww is the word size and occocc is the number of occurrences of the pattern. Our algorithm uses less space than previous algorithms and is also faster for occ=o(nlogN)occ=o(\frac{n}{\log N}) occurrences. The algorithm uses a new data structure that allows us to efficiently find the next occurrence of a given character after a given position in a compressed string. This data structure in turn is based on a new data structure for the tree color problem, where the node colors are packed in bit strings.Comment: To appear at CPM '1

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem

    Dynamic Set Intersection

    Full text link
    Consider the problem of maintaining a family FF of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given S,SFS,S'\in F, report every member of SSS\cap S' in any order. We show that in the word RAM model, where ww is the word size, given a cap dd on the maximum size of any set, we can support set intersection queries in O(dw/log2w)O(\frac{d}{w/\log^2 w}) expected time, and updates in O(logw)O(\log w) expected time. Using this algorithm we can list all tt triangles of a graph G=(V,E)G=(V,E) in O(m+mαw/log2w+t)O(m+\frac{m\alpha}{w/\log^2 w} +t) expected time, where m=Em=|E| and α\alpha is the arboricity of GG. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in O(mα)O(m \alpha) time. We provide an incremental data structure on FF that supports intersection {\em witness} queries, where we only need to find {\em one} eSSe\in S\cap S'. Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected time, where N=SFSN=\sum_{S\in F} |S|. Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using MM words of space, each update costs O(MlogN)O(\sqrt {M \log N}) expected time, each reporting query costs O(NlogNMop+1)O(\frac{N\sqrt{\log N}}{\sqrt M}\sqrt{op+1}) expected time where opop is the size of the output, and each witness query costs O(NlogNM+logN)O(\frac{N\sqrt{\log N}}{\sqrt M} + \log N) expected time.Comment: Accepted to WADS 201

    The impact of emotional well-being on long-term recovery and survival in physical illness: a meta-analysis

    Get PDF
    This meta-analysis synthesized studies on emotional well-being as predictor of the prognosis of physical illness, while in addition evaluating the impact of putative moderators, namely constructs of well-being, health-related outcome, year of publication, follow-up time and methodological quality of the included studies. The search in reference lists and electronic databases (Medline and PsycInfo) identified 17 eligible studies examining the impact of general well-being, positive affect and life satisfaction on recovery and survival in physically ill patients. Meta-analytically combining these studies revealed a Likelihood Ratio of 1.14, indicating a small but significant effect. Higher levels of emotional well-being are beneficial for recovery and survival in physically ill patients. The findings show that emotional well-being predicts long-term prognosis of physical illness. This suggests that enhancement of emotional well-being may improve the prognosis of physical illness, which should be investigated by future research
    corecore