806 research outputs found
EGFR tyrosine kinase targeted compounds
In this study, we illustrate computer aided drug design of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives as epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors. Compounds 1-5
were screened at NCI, USA, for antitumor activity against non-small cell lung cancer (NCI-H522), colon cancer (HCT-116, HCT-15 and HT29) and breast cancer (MDA-MB-468 and MDA-MB-231/ATCC) cell lines in which EGFR is
overexpressed in varying levels. Results indicated that these compounds are more potent antitumor agents compared to erlotinib against HT29 and MDA-MB-231/ATCC cell lines. Compound 3 showed GI50
value of 22.3 nM against NCI-H522 cell line, while erlotinib exhibited GI50 value of 1 μM against the same cell line. In addition, these compounds were studied for their EGFR tyrosine kinase inhibitory activity. Virtual screening utilizing molecular modeling and QSAR techniques enabled the understanding of the pharmacophoric requirements for antitumor activity. Docking the designed compounds into the ATP binding site of EGFR-TK domain was done to predict the analogous binding mode of these compounds to the EGFR-TK inhibitors
Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives
A new series of thiazolylcoumarin derivatives was synthesized. The designed strategy embraced a molecular hybridization approach which involves the combination of the thiazole and coumarin pharmacophores together. The new hybrid compounds were tested for in vitro antitumor efficacy over cervical (Hela) and kidney fibroblast (COS-7) cancer cells. Compounds 5f, 5h, 5m and 5r displayed promising efficacy toward Hela cell line. In addition, 5h and 5r were found to be the most active candidates toward COS-7 cell line. The four active analogs, 5f, 5h, 5m and 5r were screened for in vivo antitumor activity over EAC cells in mice, as well as in vitro cytotoxicity toward W138 normal cells. Results illustrated that 5r has the highest in vivo activity, and that the four analogs are less cytotoxic than 5-FU toward W138 normal cells. In this study, 3D pharmacophore analysis was performed to investigate the matching pharmacophoric features of the synthesized compounds with trichostatin A. In silico studies showed that the investigated compounds meet the optimal needs for good oral absorption with no expected toxicity hazards
Scene relighting and editing for improved object insertion
Abstract. The goal of this thesis is to develop a scene relighting and object insertion pipeline using Neural Radiance Fields (NeRF) to incorporate one or more objects into an outdoor environment scene. The output is a 3D mesh that embodies decomposed bidirectional reflectance distribution function (BRDF) characteristics, which interact with varying light source positions and strengths. To achieve this objective, the thesis is divided into two sub-tasks.
The first sub-task involves extracting visual information about the outdoor environment from a sparse set of corresponding images. A neural representation is constructed, providing a comprehensive understanding of the constituent elements, such as materials, geometry, illumination, and shadows. The second sub-task involves generating a neural representation of the inserted object using either real-world images or synthetic data.
To accomplish these objectives, the thesis draws on existing literature in computer vision and computer graphics. Different approaches are assessed to identify their advantages and disadvantages, with detailed descriptions of the chosen techniques provided, highlighting their functioning to produce the ultimate outcome.
Overall, this thesis aims to provide a framework for compositing and relighting that is grounded in NeRF and allows for the seamless integration of objects into outdoor environments. The outcome of this work has potential applications in various domains, such as visual effects, gaming, and virtual reality
Examining the Influential Factors on Urban Growth and Population Attraction: A Case Study of Almere, Netherlands
This paper explores the intricate nature of population attraction and urban growth, which are influenced by a wide range of social, economic, and environmental factors. Through a case study of Almere, Netherlands, this study investigates the connection between population attraction, urban quality of life, livability, and sustainability. To assess the impact of these factors on urban growth, the study developed a measurable indicator matrix based on a theoretical framework. The study’s results demonstrate that social life, urban economy, population standards, ease of access to services, transportation, and the quality of the built environment are significant factors in population attraction and urban growth. Additionally, the study revealed some previously unconsidered factors that play a crucial role in sustaining population attraction and urban growth. The study’s findings offer insights for urban planners and policymakers to design effective strategies that promote population attraction and foster sustainable urban growth
Artificial intelligence in orthopaedic surgery
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction
Progressive Magnetic Resonance Image Reconstruction Based on Iterative Solution of a Sparse Linear System
Image reconstruction from nonuniformly sampled spatial frequency
domain data is an important problem that arises in computed
imaging. Current reconstruction techniques suffer from limitations
in their model and implementation. In this paper, we present a new
reconstruction method that is based on solving a system of linear
equations using an efficient iterative approach. Image pixel
intensities are related to the measured frequency domain data
through a set of linear equations. Although the system matrix is
too dense and large to solve by direct inversion in practice, a
simple orthogonal transformation to the rows of this matrix is
applied to convert the matrix into a sparse one up to a certain
chosen level of energy preservation. The transformed system is
subsequently solved using the conjugate gradient method. This
method is applied to reconstruct images of a numerical phantom as
well as magnetic resonance images from experimental spiral imaging
data. The results support the theory and demonstrate that the
computational load of this method is similar to that of standard
gridding, illustrating its practical utility
SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts
Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers
Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.
BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≥1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≥1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≥5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing
assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland
SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts
Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers
- …
