389 research outputs found
Effective nucleon mass and the nuclear caloric curve
Assuming a schematic form of the nucleon effective mass as a function of
nuclear excitation energy and mass, we provide a simple explanation for
understanding the experimentally observed mass dependence of the nuclear
caloric curve. It is observed that the excitation energy at which the caloric
curve enters into a plateau region, could be sensitive to the nuclear mass
evolution of the effective nucleon mass.Comment: 5 pages, 5 figures, Accepted for publication in Phys. Rev. C. Minor
changes mad
Analysis of fragment yield ratios in the nuclear phase transition
The critical phenomena of the liquid-gas phase transition has been
investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon
using the Landau free energy approach with isospin asymmetry as an order
parameter. Fits to the free energy of fragments showed three minima suggesting
the system to be in the regime of a first order phase transition. The relation
m =-{\partial}F/{\partial}H, which defines the order parameter and its
conjugate field H, has been experimentally verified from the linear dependence
of the mirror nuclei yield ratio data, on the isospin asymmetry of the source.
The slope parameter, which is a measure of the distance from a critical
temperature, showed a systematic decrease with increasing excitation energy of
the source. Within the framework of the Landau free energy approach, isoscaling
provided similar results as obtained from the analysis of mirror nuclei yield
ratio data. We show that the external field is primarily related to the minimum
of the free energy, which implies a modification of the source concentration
\Delta used in isospin studies
Nuclear expansion and symmetry energy of hot nuclei
The decrease in the symmetry energy of hot nuclei populated in Ni +
Ni, Fe + Ni and Fe + Fe reactions at beam
energies of 30, 40, and 47 MeV/nucleon, as a function of excitation energy is
studied. It is observed that this decrease is mainly a consequence of
increasing expansion or decreasing density rather than the increasing
temperature. The results are in good agreement with the recently reported
microscopic calculation based on the Thomas-Fermi approach. An empirical
relation to study the symmetry energy of finite nuclei in various mass region
is proposed.Comment: 10 pages, 2 figure
Proton induced reaction cross section measurements on Se isotopes for the astrophysical p process
As a continuation of a systematic study of reactions relevant to the
astrophysical p process, the cross sections of the 74,76Se(p,gamma)75,77Br and
82Se(p,n)82Br reactions have been measured at energies from 1.3 to 3.6 MeV
using an activation technique. The results are compared to the predictions of
Hauser-Feshbach statistical model calculations using the NON-SMOKER and MOST
codes. The sensitivity of the calculations to variations in the optical proton
potential and the nuclear level density was studied. Good agreement between
theoretical and experimental reaction rates was found for the reactions
74Se(p,gamma)75Br and 82Se(p,n)82Br.Comment: 9 pages, 6 figures (in 12 eps files), accepted for publication in
Phys. Rev C, RevTeX styl
Measuring the Temperature of Hot Nuclear Fragments
A new thermometer based on fragment momentum fluctuations is presented. This
thermometer exhibited residual contamination from the collective motion of the
fragments along the beam axis. For this reason, the transverse direction has
been explored. Additionally, a mass dependence was observed for this
thermometer. This mass dependence may be the result of the Fermi momentum of
nucleons or the different properties of the fragments (binding energy, spin
etc..) which might be more sensitive to different densities and temperatures of
the exploding fragments. We expect some of these aspects to be smaller for
protons (and/or neutrons); consequently, the proton transverse momentum
fluctuations were used to investigate the temperature dependence of the source
Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder
Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts.
Analysis of fragment yield ratios in the nuclear phase transition
The critical phenomena of the liquid-gas phase transition has been
investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon
using the Landau free energy approach with isospin asymmetry as an order
parameter. Fits to the free energy of fragments showed three minima suggesting
the system to be in the regime of a first order phase transition. The relation
m =-{\partial}F/{\partial}H, which defines the order parameter and its
conjugate field H, has been experimentally verified from the linear dependence
of the mirror nuclei yield ratio data, on the isospin asymmetry of the source.
The slope parameter, which is a measure of the distance from a critical
temperature, showed a systematic decrease with increasing excitation energy of
the source. Within the framework of the Landau free energy approach, isoscaling
provided similar results as obtained from the analysis of mirror nuclei yield
ratio data. We show that the external field is primarily related to the minimum
of the free energy, which implies a modification of the source concentration
\Delta used in isospin studies
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on Ir191
Physical Review
- …
