12 research outputs found

    Cohomology of the Lie Superalgebra of Contact Vector Fields on R11\mathbb{R}^{1|1} and Deformations of the Superspace of Symbols

    Full text link
    Following Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra K(1)\mathcal{K}(1) of contact vector fields on the (1,1)-dimensional real superspace with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We also compute the same, but osp(12)\mathfrak{osp}(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these cohomology. We classify generic formal osp(12)\mathfrak{osp}(1|2)-trivial deformations of the K(1)\mathcal{K}(1)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal osp(12)\mathfrak{osp}(1|2)-trivial deformation of this K(1)\mathcal{K}(1)-module is equivalent to a polynomial one of degree 4\leq4. This work is the simplest superization of a result by Bouarroudj [On sl\mathfrak{sl}(2)-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys., no.1, (2007), 112--127]. Further superizations correspond to osp(N2)\mathfrak{osp}(N|2)-relative cohomology of the Lie superalgebras of contact vector fields on 1N1|N-dimensional superspace

    Projectively equivariant quantizations over the superspace Rpq\R^{p|q}

    Full text link
    We investigate the concept of projectively equivariant quantization in the framework of super projective geometry. When the projective superalgebra pgl(p+1|q) is simple, our result is similar to the classical one in the purely even case: we prove the existence and uniqueness of the quantization except in some critical situations. When the projective superalgebra is not simple (i.e. in the case of pgl(n|n)\not\cong sl(n|n)), we show the existence of a one-parameter family of equivariant quantizations. We also provide explicit formulas in terms of a generalized divergence operator acting on supersymmetric tensor fields.Comment: 19 page

    On sl(2)-equivariant quantizations

    Full text link
    By computing certain cohomology of Vect(M) of smooth vector fields we prove that on 1-dimensional manifolds M there is no quantization map intertwining the action of non-projective embeddings of the Lie algebra sl(2) into the Lie algebra Vect(M). Contrariwise, for projective embeddings sl(2)-equivariant quantization exists.Comment: 09 pages, LaTeX2e, no figures; to appear in Journal of Nonlinear Mathematical Physic

    Geometric quantities associated to differential operators

    Full text link
    Denote by F_lambda the space of fields of tensor densities of weight -lambda over a manifold M. The space D^p_{lambda,mu} of differential operators of order at most p that map F_lambda onto F_mu are modules over the Lie algebra of vector fields Vect(M). We compute all the Vect(M)-invariant mappings from D^p_{lambda,mu} onto F_nu
    corecore