20 research outputs found
Recommended from our members
Quantum-limited discrimination of laser light and thermal light
Understanding the fundamental sensitivity limit of an optical sensor requires a full quantum mechanical description of the sensing task. In this work, we calculate the fundamental (quantum) limit for discriminating between pure laser light and thermal noise in a photon-starved regime. The Helstrom bound for discrimination error probability for single mode measurement is computed along with error probability bounds for direct detection, coherent homodyne detection and the Kennedy receiver. A generalized Kennedy (GK) receiver is shown to closely approach the Helstrom limit. We present an experimental demonstration of this sensing task and demonstrate a 15.4 dB improvement in discrimination sensitivity over direct detection using a GK receiver and an improvement of 19.4% in error probability over coherent detection. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing AgreementOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Further investigation on adaptive search
Adaptive search is one of the fastest fractal compression algorithms and has gained great success in many industrial applications. By substituting the luminance offset by the range block mean, the authors create a completely new version for both the encoding and decoding algorithms. In this paper, theoretically, they prove that the proposed decoding algorithm converges at least as fast as the existing decoding algorithms using the luminance offset. In addition, they prove that the attractor of the decoding algorithm can be represented by a linear combination of range-averaged images. These theorems are very important contributions to the theory and applications of fractal image compression. As a result, the decoding image can be represented as the sum of the DC and AC component images, which is similar with discrete cosine transform or wavelet transform. To further speed up this algorithm and reduce the complexity of range and domain blocks matching, they propose two improvements in this paper, that is, employing the post-quantisation and geometric neighbouring local search to replace the currently used pre-quantisation and the global search, respectively. The corresponding experimental results show the proposed encoding and decoding algorithms can provide a better performance compared with the existing algorithms
