24 research outputs found

    High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment : application to a Mass Transport Complex offshore Nigeria

    Get PDF
    International audienceWe assess the feasibility of high-resolution seismic depth imaging in deep water based on a new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determination of the P-wave velocity distribution was realized by the adaptation of an iterative focusing approach to the specific acquisition geometry. This innovative experiment combined with advanced processing succeeded in reaching lateral and vertical resolution (2.5 and 1 m) in accordance with the objectives of imaging fine scale structures and correlation with in situ measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred from movement of coherent material inside the MTC and thrust structures at the base of the MTC. Furthermore, a silt layer that was disrupted during emplacement but has maintained its stratigraphic position supports a short transport distance

    Les glissements de terrain sous-marins sous haute surveillance

    No full text
    National audienceLa mer ligure : une région de montagnes sous-marines Le relief sous-marin de la région niçoise est particulièrement pentu, creusés par des canyons, et certains évènements, tels que des séismes, peuvent le déstabiliser jusqu'à provoquer des glissements de terrain sous-marins. Glissement de terrain meurtrier et tsunami au large de Nice Le 16 octobre 1979, un glissement de terrain se produit sur le chantier de l'agrandissement de l'aéroport de Nice et provoque la mort de 10 ouvriers ainsi qu'une vague de 2 m qui inonde le quartier de la Salis à Antibes et provoque le décès d'une promeneuse

    Mass-transport deposits on the Rosetta Province (NW Nile deep-sea turbidite system, Egyptian Margin): characteristics, distribution, and potential causal processes

    No full text
    Marine Geology, v. 250, n. 3-4, p. 180-198, 2008. http://dx.doi.org/10.1016/j.margeo.2008.01.016International audienc

    Les glissements de terrain sous-marins sous haute surveillance

    No full text
    National audienceLa mer ligure : une région de montagnes sous-marines Le relief sous-marin de la région niçoise est particulièrement pentu, creusés par des canyons, et certains évènements, tels que des séismes, peuvent le déstabiliser jusqu'à provoquer des glissements de terrain sous-marins. Glissement de terrain meurtrier et tsunami au large de Nice Le 16 octobre 1979, un glissement de terrain se produit sur le chantier de l'agrandissement de l'aéroport de Nice et provoque la mort de 10 ouvriers ainsi qu'une vague de 2 m qui inonde le quartier de la Salis à Antibes et provoque le décès d'une promeneuse

    La memoria de los j\uf3venes y las luchas por la emancipati\uf3n

    No full text
    la questione della memoria sociale e della sua trasmissione intergenerazionale nel caso italiano; alcuni esempi di aspetti occultati; una questione di rappresentazione politic

    Triggering factors and tsunamogenic potential of a large submarine mass failure on the western Nile margin (Rosetta area, Egypt)

    No full text
    A large-scale mass-transport deposit (MTD) called Sl6 was recognized on the upper slope of the western Nile margin, downslope from of a 30 km-long scarp located along the outer shelf. Regional mapping indicated that this MTD extends on nearly 505 km2 and involved about 14 km3 of Pleistocene-Holocene sediment. Sl6 was triggered between 10 and 9 kyr BP, during the Holocene sea-level rise and coeval pluvial period (increased river flow). The consequent enhanced sediment supply on the upper slope and the outer shelf area caused local overburdening. This factor combined with the potential accumulation of gas in the sediment and earthquake activity is thought to have been the main factor triggering the Sl6 MTD. From the estimated volume of the MTD, a potential slide-generated tsunami was numerically simulated using the GEOWAVE software. The results indicate that the ~80 km wide Egyptian continental shelf protects the main part of the coastline from a slide-induced tsunami coming from the Rosetta area. An exception is the part of the coastline around Alexandria because focussing and shoaling processes can be simulated very close to the coast
    corecore