241 research outputs found
Realization of a Knill-Laflamme-Milburn C-NOT gate -a photonic quantum circuit combining effective optical nonlinearities
Quantum information science addresses how uniquely quantum mechanical
phenomena such as superposition and entanglement can enhance communication,
information processing and precision measurement. Photons are appealing for
their low noise, light-speed transmission and ease of manipulation using
conventional optical components. However, the lack of highly efficient optical
Kerr nonlinearities at single photon level was a major obstacle. In a
breakthrough, Knill, Laflamme and Milburn (KLM) showed that such an efficient
nonlinearity can be achieved using only linear optical elements, auxiliary
photons, and measurement. They proposed a heralded controlled-NOT (CNOT) gate
for scalable quantum computation using a photonic quantum circuit to combine
two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT
gate. We developed a stable architecture to realize the required four-photon
network of nested multiple interferometers based on a displaced-Sagnac
interferometer and several partially polarizing beamsplitters. This result
confirms the first step in the KLM `recipe' for all-optical quantum
computation, and should be useful for on-demand entanglement generation and
purification. Optical quantum circuits combining giant optical nonlinearities
may find wide applications across telecommunications and sensing.Comment: 6pages, 3figure
An Algebraic Approach to Linear-Optical Schemes for Deterministic Quantum Computing
Linear-Optical Passive (LOP) devices and photon counters are sufficient to
implement universal quantum computation with single photons, and particular
schemes have already been proposed. In this paper we discuss the link between
the algebraic structure of LOP transformations and quantum computing. We first
show how to decompose the Fock space of N optical modes in finite-dimensional
subspaces that are suitable for encoding strings of qubits and invariant under
LOP transformations (these subspaces are related to the spaces of irreducible
unitary representations of U(N)). Next we show how to design in algorithmic
fashion
LOP circuits which implement any quantum circuit deterministically. We also
present some simple examples, such as the circuits implementing a CNOT gate and
a Bell-State Generator/Analyzer.Comment: new version with minor modification
Adding control to arbitrary unknown quantum operations
While quantum computers promise significant advantages, the complexity of
quantum algorithms remains a major technological obstacle. We have developed
and demonstrated an architecture-independent technique that simplifies adding
control qubits to arbitrary quantum operations-a requirement in many quantum
algorithms, simulations and metrology. The technique is independent of how the
operation is done, does not require knowledge of what the operation is, and
largely separates the problems of how to implement a quantum operation in the
laboratory and how to add a control. We demonstrate an entanglement-based
version in a photonic system, realizing a range of different two-qubit gates
with high fidelity.Comment: 9 pages, 8 figure
Heralded generation of entangled photon pairs
Entangled photons are a crucial resource for quantum communication and linear
optical quantum computation. Unfortunately, the applicability of many
photon-based schemes is limited due to the stochastic character of the photon
sources. Therefore, a worldwide effort has focused in overcoming the limitation
of probabilistic emission by generating two-photon entangled states conditioned
on the detection of auxiliary photons. Here we present the first heralded
generation of photon states that are maximally entangled in polarization with
linear optics and standard photon detection from spontaneous parametric
down-conversion. We utilize the down-conversion state corresponding to the
generation of three photon pairs, where the coincident detection of four
auxiliary photons unambiguously heralds the successful preparation of the
entangled state. This controlled generation of entangled photon states is a
significant step towards the applicability of a linear optics quantum network,
in particular for entanglement swapping, quantum teleportation, quantum
cryptography and scalable approaches towards photonics-based quantum computing
Planetary stations and Abyssal Benthic Laboratories: An overview of parallel approaches for long-term investigation in extreme environments
In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Epigenetic dynamics of monocyte-to-macrophage differentiation
Background Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium. Results Numerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis and innate immune response. Conclusions In summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in monocytes and rapidly de-repressed after the onset of macrophage differentiation
- …
