25,143 research outputs found

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Modelling of plate heat exchangers and their associated CO2 trancritical power generation system

    Get PDF
    Globally, there is no shortage of low-grade waste and renewable heat sources that can be converted into electricity and useful heat using applicable thermodynamic power cycles and appropriate working fluids. As a natural working fluid, CO2 is a promising candidate for application in low-grade power generation systems but require optimised design and evaluation. Since CO2 working fluid has a low critical temperature (31.1⁰C) and high critical pressure (73.8 bar), a CO2 low-grade power generation system will most likely undergo supercritical Rankine (T-CO2) cycles. A T-CO2 system normally consists of a CO2 supercritical gas heater, expander, recuperator, condenser and liquid pump with the CO2 gas heater being a crucial component in determining system thermal and exergy efficiencies. In this paper, the models of a thermal oil-CO2 plate gas heater has been developed and validated with measurements of a 5kWe T-CO2 system test rig. The model is then integrated with other system component models to establish the system model. The system model can be used to evaluate and compare system performances at different operating conditions, including variable CO2 gas heater pressures and heat sink parameters, thereby optimising system operations.The authors would like to acknowledge the support received from GEA Searle and Research Councils UK (RCUK) for this research project

    Induction-heated nanoimprint on soda-lime glass using sapphire molds

    Get PDF
    published_or_final_versio

    New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model

    Full text link
    From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distribution function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter

    Laser-induced charging of microfabricated ion traps

    Full text link
    Electrical charging of metal surfaces due to photoelectric generation of carriers is of concern in trapped ion quantum computation systems, due to the high sensitivity of the ions' motional quantum states to deformation of the trapping potential. The charging induced by typical laser frequencies involved in doppler cooling and quantum control is studied here, with microfabricated surface electrode traps made of aluminum, copper, and gold, operated at 6 K with a single Sr+^+ ion trapped 100 μ\mum above the trap surface. The lasers used are at 370, 405, 460, and 674 nm, and the typical photon flux at the trap is 1014^{14} photons/cm2^2/sec. Charging is detected by monitoring the ion's micromotion signal, which is related to the number of charges created on the trap. A wavelength and material dependence of the charging behavior is observed: lasers at lower wavelengths cause more charging, and aluminum exhibits more charging than copper or gold. We describe the charging dynamic based on a rate equation approach.Comment: 8 pages, 8 figure

    Cosmic Parallax in Ellipsoidal Universe

    Full text link
    The detection of a time variation of the angle between two distant sources would reveal an anisotropic expansion of the Universe. We study this effect of "cosmic parallax" within the "ellipsoidal universe" model, namely a particular homogeneous anisotropic cosmological model of Bianchi type I, whose attractive feature is the potentiality to account for the observed lack of power of the large-scale cosmic microwave background anisotropy. The preferred direction in the sky, singled out by the axis of symmetry inherent to planar symmetry of ellipsoidal universe, could in principle be constrained by future cosmic parallax data. However, that will be a real possibility if and when the experimental accuracy will be enhanced at least by two orders of magnitude.Comment: 9 pages, 2 figures, 1 table. Revised version to match published version. References adde

    A Model of Strongly Correlated Electrons with Condensed Resonating-Valence-Bond Ground States

    Full text link
    We propose a new exactly solvable model of strongly correlated electrons. The model is based on a dd-pp model of the CuO2_2 plane with infinitely large repulsive interactions on Cu-sites, and it contains additional correlated-hopping, pair-hopping and charge-charge interactions of electrons. For even numbers of electrons less than or equal to 2/3-filling, we construct the exact ground states of the model, all of which have the same energy and each of which is the unique ground state for a fixed electron number. It is shown that these ground states are the resonating-valence-bond states which are also regarded as condensed states in which all electrons are in a single two-electron state. We also show that the ground states exhibit off-diagonal long-range order.Comment: 17 pages, 1 figure, v2: minor changes, v3: minor changes and typos correction
    corecore